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corresponding expressions with a greatly reduced
number of terms in the sums, the summation taking
place over integers only. Furthermore, a rather
simple recurrence method is described for obtaining
the expressions under consideration. The technique
resembles that used by one of the authors# in the
case of SU,. The two classes of expressions are
given and their symmetry properties, partly given

in Ref. 3, discussed.

In Appendix A it is shown how the corresponding
formulas can bé obtained from the results of Ref. 3.

In Appendix B there is given a useful relation be-
tween the isoscalar factors of the Gel'fand basis and
the elements of the recoupling matrix described in
Ref. 5.

The results of this paper can be used for obtaining
the general expressions for the CG coefficients of
U,. For this purpose one can use the projection
operators in the form of polynomials of infinitesimal
operators® as has been done in the case of SU,.7
Alternatively, one can use the recurrence relations
obtained by forming the general tensor operators
from the symmetric ones. The normalization proce-
dure in the second case can be carried out using the
relation of Ref. 5.

2. THE MATRIX ELEMENTS OF POWERS OF
INFINITESIMAL OPERATORS

At first we obtain the expression for the i.f.of a
special kind

[m n 4 m’]m
[[m]n-l 0 {m]n-l}
=[p! Kjglksn (mj, — my, —Jj + k)] 2
D([m]n’ [m,]n)r([m’]n’ [m]n—l)

(0], [ly) ®

Here [m], = [mq,,mg,, .. .,m,]| means the corres-
ponding row of the Gel'fand pattern of the represen-
tation of U, (c.f.Ref.1),p is the single parameter of
the symmetric representation. In (1), and in what
follows, we use the notations

I ([m],, [m],-1)

_ a1z
( 1si<§Lu-1(”’in My — & +5)! o

_ .

= - — ,
15;9“,, (mj,_y — My, +i—7 1)!

1gi<jsnm

0 G, —m, —i+j—Dhve
D(m], [m'],) =< )

<icq (m_j,n_min+i‘”j)!
lgjgicn (3)
The dependence of the i.f.of Eq. (1) on the para-
meters of the representations of the subgroup U, _, is
confined to I, this dependence being deduced by fac-
torizing the simpler i.f.8 The remaining part of the
expression on the right-hand side of Eq. (1) is a nor-
malization factor. This factor can be deduced by
equating the particular case of Eq. (1) (m],_; = [m],,
m,, = 0) to the one calculated with the help of projec-
tion operators (Refs 6 and 7). It must be noted that
we use the general weight lowering operators of the
form
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(0] =%(_A nt (= = i+ 9)!
(1], T (, — ) s=#1 (B —hl —i +s)!

F.

R AL A
N
1y, n-1 B
X P:'mx[h ]n-ligl Eﬂih’h" (4)

rather than that of Ref. 9. Here P, [k'],_, is a pro-
jection operator of maximal weight as defined in Ref.
5. :

The easiest way to obtain (1) is to use the results of
Ref. 3 [these last ones being contained in Eq. (A2) of
Appendix A]. The sum F, (; — ) in this case re-

duces to one term equal to 1.

Let us now consider the calculation of the matrix ele-
ments of powers of generators. The simplest cases
of them are obtained by factorizing the matrix ele-
ments of individual generators of the group. To these
cases belong, in the first place, the matrix elements
stretched with respect to the parameters of the re-
presentations of subgroups.

The simplest of powers of generators seems to be
(E,-1,)?. With respect to the subgroup U, _;, this
operator corresponds to the scalar component U, _,
of the symmetric tensor T». Hence this matrix ele-
ment is proportional to the i.f. of U,_, being calcula-
ted with the help of (1). The corresponding reduced
matrix elements are to be obtained from the rela- y
tion i

[m], g ¢ [ml,
<~[m”}n-1 noin || [m'], ./
BE n -1
— [[m’]n-l 14 [m,]n—l:‘
(mly-z O [m,0] -
/[m] L Y [m]
/ Iln E 14 ” E - P ? .
x \\[m ]n-l [m ]n-—2 ( " 1n) [m Tn—1> 3
max E
(5)
Here m;,_, = mj, 4 (i <7 2) is the maximal weight
of U,_,. The operator P,_"[m'],_, in F_ gives unity
in this case. With the help of Eq.%z. 11) of Ref.T we

transpose E,_;, with F7. All the powers of E;,_,
with nonvanishing exponents acting on the maximal
state of U,_, give zero. For this reason, summations J
arising in the process of the transposition disappear .
and we are left with the matrix element of the opera- }
tor

! n-1 m? _ -m
7 7 I1 E, “inm) Tinnl,
(mn—1n~1 - mn—ln—l)! i1

which is stretched in this case.

The operations described above give the following
expression for the reduced matrix element under
consideration:

(m],

\[m']n-l

[m],
[m]n-l/

n-1 n-1
i=1 i1
- — 4 +4)1¥/2
x 1<i<_11_s[n-1(min-1 mjn—l 1 +])]

D([m]n-l’ [m’]n~1)r([m]n’ [m]n—l)
r({m],, [m'],-1)

E b

n-1n




ltis to be noted that this reduced matrix element
coincides with those of the operators

pl oYz,

(El ‘> <E a, ~p> )
aA- =1

=1

because they form the basis of the representation p of
U,.;. The corresponding matrix elements themselves
are obtained by multiplying the reduced matrix ele-
ments obtained above by the products of i.f.'s to be
dealt with in what follows.

3. ISOSCALAR FACTOR WITH ONE OF THE RE-~
PRESENTATIONS SYMMETRIC

Ingeneralizing and simplifying the method of Ref. 4,
 we take the lowest weight component T0 of the sym-
metric unit operator of U,. Its matrix element with
respect to the corresponding basis is equal to the
il.given by Eq. (1). More general components of the
L same operator are

- ((i}; ))1/2

X [En-lniEn-ln[" [ n- lnTp} ]ﬂ

g times
—_ l 1/2 . 1)x
=(( lJC'I) > ;EﬁEn-‘q"To n-1n
(8)

The reduced matrix element of this operator with
B respect to the subgroup U,_, is the i.f.under con-
g sideration; it is

e b ]
[m]n~1 q [m ]n-l
= [(1) —q)! 1Si<,l7jsn-1 (mm— = My — i+37)
x 1si<r}sn (my, — m}"n — i+ j)]V2
o Dml,, [m],)T (], [m],-1)
D([m]n-l’ [Wl ]n—l)r([ ’]n’[m ]n*l
X E (— 1) );;2:-11 @ip 1" "in-1)
[rly-1

% 1si<njsn—1 ("in—l = ¥in-1 1 +7)

xD2([m], 1, [],-)D2(7]p-15 [m 1)
L T2, [, )
rz([m]n ’ [T]n—l)

2 n n-1
2 P=Z(mi',,—"mm), q =§(mi;*l-
i=

min-l)’ (9)
i=1

[r],-, being the Young scheme and the summation

2B tiking place over n — 1 parameter #,,_;. When both

3§ of the two representations to be coupled are symmet-

W ric, expression (9) reduces to the CG coefficient of
 §U, [the second of Eq. (13.1) of Ref.10]. On the other

hand, when # = 3 it turns into Eq. (3. 14) of Ref. 4.

Furthermore, we can limit ourselves to the case

®n,=0 wh1ch does not influence the value of the i.f.,

& s pointed out in Ref. 1,

4 ltis easy to see that (9), after omitting the square
8 root, possesses the high symmetry indicated in Ref.
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3. For example, it i° possible fo transpose the para-
meters m,,_; and m.. , with the appearance of the
phase factor (— 1) m, im-1— #..1,- The other kind of
Regge symmetry gives the {rausposition of mi;, with
m;, 1, without any phase factor. For the tabulation of
the symmetric part of (9), it is useful to appiy the
following scheme of 4n — 2 parameters:

4» 2% 5 e ’ % 4
my,, max(m{, 1, m;, ), minlmy, 1,mq,), maximg,,m;, 1),

ind; (203! y =
min@mg, , my, 1), max(mig, 1, Mg,), ..., m,, =0
(10)

arranged in a lexical order and using specified phase
relations for the transpositions of the first Regge
symmetry type.

Another symmetry property follows from the con-
tragredience relations.8 This procedure gives (— 1)¢4
as a phase factor, and the set of parameters (10)
turns into the set obtained from this one by changing
the signs and writing in inverted order, all the para-
meters becoming positive after adding m,, -

In this way one obtains 22721 symmetry properties
for the quantity (). It stands to reason that not all
the Regge symmetry propertiesl?! of quantities of
SU, can be generalized to SU, withn > 2.

We observe that the symmetry property of Ref. 3
allowing one to interchange the rows in the skew
scheme belongs to the substitution group symmetryl2
rather than to one of the Regge type. Eguation (9) is
invariant with respect to this group which is equiva-
lent to partial hook permutations {(c.f. Ref. 1).

It is to be noted that the relation between 1.f.’s which
couple the bases of two symmetric representations
(of equal or different contragrediency) and SU,, CG
coefficients13 follows immediately from the Regge
and substitution symmetry properties.

Expression (9) does not allow one to carry out the
summations even for particular cases. Thus, it iz
worthwhile to use other methods to obtain different
expressions for the same i.f. We can obtain one such
expression by the use of the operator

Hi 1/2 _
<<p L) Fann 20E

n-1in+1 ?

1 /2 F (._ 1)y-=
_((p - q)!q5> Sy —a)l{g—v + o)l
x Enn*l Y En~ln Enﬂ+1 Py (11)

instead of {(8). After dividing its matrix element by
the reduced matrix element of the operater E,,,,¢ ?
and the i.f.of U,_;, one obtains

[

[ml,r @ [m'ly

=[b— V2| 1L nly—mj, —i+))

x 1 m,,  — my

e

[ 'L,,

’ 12
']/ a2)
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seter nﬂﬂ)
n.  The terms of this ‘sum dependfm a0 <a'sp—g)
However, the ﬁnai resui n}ust be indepéndent f thi

7 ’E@ahan (14)"311.:—7 PRt
be provedf by mdueﬁon startmg Gm{ E of -

“on vy, (i f eé) m%o the qnasipawers {c.f
" Ref. 10), all’ these‘being brought into the numerator
The factors left in. th _denommator ar‘

It is evident that the sum in (13) in- thxs néw farm hzs fj'j o B . e (A

- a much wider summation _region, because it involves .

n — 1 new regions. However, this procedure does not i,eaf;fit:g, B } an;i ;z]_}_’emgf(:%m sc?emhfih?th?
“change the value of the sum (13), becausenonvanishing | notatl(ms ofi‘ti‘nist nﬁa?pér the result gf’ Refhé allows us -
terms in these new regions are compensated by a set te write 2 2

‘of terms equal in- absolute value-and -opposite in- mgn , ,

"to the first ones. ‘These terms can be found by re-.
nnmerating the mmmaﬁcm parameters Vg — F

e s f = labeling “the newiyiappean

The abcve mentloned S“mmation ith respe 4
Ie&ds us. to the expressicm R S

,Qq’r},,,immpg %q 1,, v ‘]‘ 5" olrhs,

Tl }w{mﬂ,-; e

“The quantitxes D . ;»and 1’; o are ehtained fmm L
“those of Eqs. (2} and B'f by removmg those fs;ctats
mvclvmg parameters vnth subscnpts £, 0ut o ?r}

Since all R, (z a1, o B ‘,n} in(15) are equivalen S
they are connected by the elements of the substitu-
-tion group of Ref. 12, R, and R, are more convenient
‘for some problems. For example, in the *»sEmistrefEch-
edcase(m,m.. )1tisusefu1totak‘ '
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- of bisymmetric functions F,

1]
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nk_h +1A +2,.. ,mm,

A)andthey tothele(]_.l 2,.
n- ll_nzjn_1+1mjn1+2 :

n- 1 (7\2 ],,»1))

Extendmg the definition of F, , we can define the set
$=0,1,...,p,),F,
being the sum of the coefflcxents of those permuta-
tions in (A3) in which s arbitrary symbols from the
set1,2,...,p, are substltuted by the symbols from
another setp; +1,p, +2,. cosPy TPy Itcanbe
shown, that the followmg set of equatlons hold for the
F.:

s°

kh—i(i=1,2,.
Pz—E'; l(mm
] Jp]_ -

(pl;'S)!(pz'“S)! P b
By = o) oy = 8)i(py — vg) Ty = &1 £5= Vs,

(A4)
where N .
Lo ST R WL by
b b :
Vs, ® = 2(1)2(3) t=p, ﬂd e prllq A ;-un+1 '
x@+ 1>@+ 1)@+ 1‘;(&)
’ X Xy Y V= S

© vy and v, can take on arbitrary values from the inter-
. vals 0 = vy <p, and 0 < v, < p,, respectively. The

first summation in (A5) is taken with respect to per-
mutations, one from each left coset of the group of
permutatmns of indices 1, 2, ..., p; with respect to
the subgroup of permutations of indices 1,...,2; and
v+ 1,...,p,, within the two sets,. /The second sum-~

f', matmn is analogous to the first one, the group being -

the permutation group of the symbolsp; +1,...,
by + by, and the subgroup having as its elements the

P permutations within the'two sets p; + 1,...,p; + v,

andpl + 1’ + 1,..-,?1 +P2
Taking the different sets of (p; + 1) equetlons from

the extended set (A4), we obtain different expressions

for F, . Thus, if we take the equations with v, = p,
and v, varying fmm 0to pl, we have
SRS ‘
E, Z; -1 1) ”1 V"xé’z

The value of the bisymmetric function V’ "2, the
arguments takmg the mentioned values, 1s equal to

D3] '], 0] D% s
RGO R () DO

- 7) =t
(A7)

‘vasmg(AG)(Aﬂforﬂm

- f (AS)
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1, Young S expression for
the dimensions f[x;, and performing the simplifica-

tions needed, we obtain formula (9) for the i.f.under
consxderatlon. ‘

‘On the other hand, solving equatlons (A4) with v; =
using the values of x; and Yp indicated above, one
obtains

=2

[rl,

Fo= (= 1)»- “,V'(,Dg"‘y)’
Py T @mﬁ%y«a(m+a—ﬁ'

m’

bk e

nl]n 1[AL

Formulas (A2) and (AB) may be brought into the form
equwalent to the result given by the Eq. (12) and (13).

APPENDIX B: RELATION BETWEEN RECOUPLING
MAT'RICES AND ISOSCALAR FACTORS :

Accordmg to the results of Ref. 5, the following rela-
tion holds between the elements of the recoupling
“matrix of four representations of U, with three of
them. symmetrie and the i, f.. ~

(mYpey aQm'lyey) 70 = 06"); {m"t |
x| [y (m],), ap —q(p);[m'],)
oy q'(P*q)'A[m] 1A[m In )1/2
()
I} ’ n oo oe-lo

Emtnl’v

r"ﬁ~q+r~2n% (B1)

A[7] is given in (A2).

The particular cases of this relation (whenp = g for
U, and for the semistretched i.f. of SU,) have been
obtained in' Refs. 3 and 4. It can be seen that in the
semistretched case of the i.f. (m,, =m,,),the re-
coupling matrix goes over into the one of U 1
particular case of this matrix (withp =4 and m
n,,) gives the matrix changing the canonical chains ‘
of subgroups in U, .3, 14 Equations (12) and (15) for
the 1.f. on the right ~-hand side of (B1) are more con-
venient to use than Eq. (9), because in the first case
there remain only n ~ 2 summation parameters, in-
stead of # — 1 as is in the second case,
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