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The homomorphism of a special kind between the ring of symmetric polynomials
and the center of the symmetric group ring is established. In the homomorphic mapping
of the first ring on the second one the proper values of the images are the values of the
corresponding symmetric polynomials with the variables substituted by the set of integers
found from the corresponding Young diagram.

1. Introduction >

The symmetric group is one of the most familiar and important finite groups in pure
mathematics as well as in physical applications of the group theory. In this note a rela-
tion of special type between the theory of the symmetric functions and the theory of the
symmetric group characters is presented. The known relation between these two theories,
the Frobenius formula ([5], p. 67), which is the most appropriate representative of it, is
a consequence of the more comprehensive Schur-Weyl relation between the theories of
representations of the symmetric and full linear group [9]. The relation formulated in this
paper is an intrinsic property of the symmetric group.

2. Preliminaries

We assume the group ring and the ring of symmetric polynomials to be defined over
the field of complex numbers, although the result is valid under more restrictive conditions.
In particular, the field of complex numbers may be replaced by the ring of integers.

Considered as an algebra, the ring of symmetric polynomials in »—1 variables has an
infinite basis

ool gt (k=0,1,...; i=1,2,...,n—1), | (1)
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where the o’s are elementary symmetric functions [8]

O1=01(X15 X2, coes Xy ) =Xg + X+ +X,_ ¢,

0',,_150'"_1(361, X2y eany x”_1)=x1x2...x,,_1 .

The element of the basis (1) with all &’s vanishing is the identity of the ring. We take it
for the elementary symmetric function of zero degree. It may be written as

00=00(Xy, Xz, .00, X —1)=0'?0'g---0';?—1= . ' (3)

The n symmetric functions o,, o, ..., 0.1 are the generators of the basis (1) and, hence,
of the ring of the symmetric polynomials in #n—1 variables. (This statement is known as
the “fundamental theorem” of the theory of the symmetric functions [8].)

The center of the group ring, as the subring of the group ring, consists of elements
commuting with all the elements of the group. The sums of elements of conjugate classes
are the basic elements of this subring. As for the symmetric group of the order n! (the group
Sy), a class is uniquely defined by the cycle structure () =(1"12%2 ... n™) of the permutations
of this class [5]. Denote the sum of all the permutations with the same cycle structure
(«) by

C,. 4)

Farahat and Higman have shown [1] that the basis (4) and, hence, the center of the group
ring of S, are generated by the elements

z=Y C, (i=1,2,..,n). (5)

t(a)=i

Here the summation is taken over the classes having the same number of cycles (including
the 1-cycle), i.e.

t@)=Y e (6)

3. The homomorphic mapping

Let (ik) denote the transposition of the symbols i, k. It was shown in [3] that the elements
k .
=2 (ik+1) (k=1,2,...,n—1) (D
i=1

form a full set of commuting operators of the group ring of S, in the following sense:
if the basic function of the representation is at the same time a proper function of all the
operators )y, its transformation properties under S, are uniquely defined.
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Now we prove that
Zy-p=0,(¥1: Y25 > Va-)  (P=0,1,...,n—1). (8)

Here in the analogy with (3) we assume 6o (1, V2, .-.» Yu—1) t0 be defined as the identity
element ¢ of the group ring of S,, the identity permutation itself constituting the class
with n 1-cycles. |

The proof of (8) can be carried out by induction. Performing the corresponding opera-
tions on elements y; involved in the definition of the symmetric functions (2) we convince
ourselves that (8) is valid for S,, S;, S,. Assuming this valid for S,_, we prove validity
for S, using the expression :

o'p(yla Va5 .o yn—1)=o-p(y19 V2s e yn—2)+a —1(y19 Vas oo yn-—z)')’n—l
(p=0,1,...,n—=1) (9)

(note that o_,=0=06,_1 ()1, Y25 .+-» Vu—2)).- The first summand on the right-hand side
of (9) considered as an element of the group ring of S,_; is, by the induction hypothesis,
equal to Z,_;_,. The summand considered as an element of the group ring of §,,
is the sum of all the permutations from Z,_, having the symbol » in the 1-cycle. 7,_,
from the second term in (9) is, by the induction hypothesis, the sum of all the permutations
of S,_; having n—p cycles. When multiplied by y,_,, the resulting permutations of S,
have the same number of cycles the symbol » not occurring in the 1-cycle and each such
permutation occurring only once. These facts follow from the multiplication rule of the ele-
ments of S,: if

" (igigesiy)e (kg kye oK)
is the full cycle expression (including 1-cycles) of the permutation of S,_,, then
Giyigeni)eo (kg Ky k) oy =iy Migenei)er (g Koo - (ig iy Prevnd ooy Kpon )+ ovn
v t(igigedn). (ki kyo k) + .o+ (i Bn. .0, (KK, k) +
+(igige..i,)...(kikyn.. . k)+ ... +(yiy...0,).. (ki ky.. . kgn) . (10)

| It follows that the expression (9) is the sum of all the permutations of S, having n—p
b cycles. Thus (8) is proved.

From the ‘“fundamental theorem’ mentioned above, and from the result of Farahat
i and Higman and equation (8) it follows that each element of the center of the group ring
i of S, may be expressed as a symmetric polynomial in the set of n— 1 elements (7) (obviously,
- not uniquely, if the order of the group is finite). It follows also that each polynomial sym-
i metric in the elements (7) is a uniquely defined element of the center of the group ring.
t Thus, a special kind of homomorphism is established between the two rings. The main
. interesting property of this homomorphism is connected with the proper values of the
= images. '
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4. Proper values of the homomorphic images

It is well known that an element of the group ring belongs to its center if and only if it
is represented in all the irreducible representations [A] by multiples of the identity matrices.
In particular, the multipliers (or proper values) for the basic elements (4), the so-called
class multipliers [6], are

h x[l]
o=l an
fa

where ¥t is the irreducible character, f; the dimension of the representation, and h; the
number of elements in the class ().

If we take the proper functions of the set of operators (7) for the basis of the irreducible
representation [4] of S,, then the elements of the basis are uniquely characterized [3] by
the standard Young tableaux [6] of the Young diagram [4], the diagram itself characterizing
the irreducible representation. The proper value <p| ykl p> of y, for the function, character-
ized by the standard tableaux p, is equal to the difference between the column indexX i
and the row index j,,, of the (k+1)-th node in p [3]

<Pb’klp>=ik+1—jk+1 . - ; (12)

The standard tableaux of the same diagram differ one from another only in the enu-
meration of their nodes by the symbols 2, 3, ..., n [6]. It follows that each symmetric
polynomial in the set of elements (7) is represented in [1] by a multiple of the identity matrix,
the multiplier equal to the numerical value of the polynomial when the variables assume
the values of the integers (ix+1—Ji+1) for n—1 nodes of the Young diagram [A].

The results of the preceding section thus imply that the symmetric polynomials for
calculating the proper values of the elements of the center of the group ring of S, may be
obtained. In particular, the class multipliers (11) and, consequently, the irreducible
characters of S, can be calculated with the help of the polynomials found in such way.

5. Remarks and examples

1. The set of the n integers (ix+1 —jk+1) for a given Young diagram [A] is called in [7]
the content of this diagram. In our formulation we excluded the node in the upper left
corner of the diagram. However, the latter may be included in a trivial way, because for
this node (i;—j;)=0 in all Young diagrams.

We note that the integers from the content of [i] enter differently here than they
do either in the fundamental theorem of Young ([6], p. 38) or in the expression for the
Young operators given in [2]. Certainly, the expression for the diagonal matrix element
of an element of the center of the group ring, found from formula (3.30) of [2] as a function
in n variables, will not have the form of a symmetric polynomial. As noticed in [3], this
results from the validity of the last expression for any skew-representation, the irreducible
one being only a particular case of these latter.
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2. The expounded homomorphic mapping may be reformulated for the ring of symmetric
polynomials in m variables with arbitrary m>n—1. In such case one must assume that the
image of o; s with k>n—1 is the zero of the group ring. Then, expressing the symmetric
polynomial as a polynomial in ¢’s, one finds the image and its proper values so as if the
o s for k<n—1 are the functions in »—1 variables.

3. Instead of taking the elementary functions for the generating symmetric functions,
we must take other sets of functions, for instance, ([5], [7]), complete homogeneous or
power sum symmetric functions. Their homomorphic images in the center of the group
ring of S, are sets of generators of the center, different from two such known sets ([1], [4]).

4. If C, is expressed as a poynomial P(sy, s,, ..., Sp—1) in power sum symmetric
functions

n—1 )
sk=;1yf' (k=1,2,...,n=1) (13)

a; a; ... a,
by b, ... b,

is used for the Young diagram [4] ([5], p. 60) then it follows from (11) that the character
of the class () is

and Frobenius’ notation?

P(t,t s veey by
XE‘A]:: (1 2 l)f)., (14)
h,
where

r a; b;
te=Y [3 F+(~1DFY 1. (15)
i=1 1=1 =1

Hence the Bernoulli numbers enter into the expressions for irreducible characters of the
symmetric group.

5. Let us take an example.

The Young diagram [5421] in Frobenius’ notation is given by

(51)

The content of this diagram is (we place the integers of the content in the corresponding
nodes of diagram)

0| 1}2]3]4]
-1 0|12
—2|-1]

__3'

! In this notation g, is equal to the number of nodes in the ith row on the right from the node on the
leading diagonal and b, denotes the number of nodes in the ith column below the same node.
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