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Let Snnhe the group of all permutations of some set

with n&-’)‘ielements. Let L = Cdy, VI .{,n)'be the par-

fition of 1 with &> 4, 2 NN (J‘AZ 0,,3'“‘2;1&A=n)an§ 16t
K, = S'&ix‘s‘%x.-.x‘S'_Ln be the direct product of the sub-
groups of Sn, acting on disjoint subsets of thse basic set,
| Denote by (:Lf? the representation of Sn, 1nducad_
by the trivial representation of K . Zet {p] denots
the irreducible fepresentation. defined by the partition
B= (Pi)PQ)uo;’5n) of n [1 - 3] . Maturel question
arises: what is the intertwining number { < L>|{p}) of the

expression

{pd

two representations, which in terms of characters has the
1 — {4
LY Iipdd= 7 2 Fs S

Yo X
. seS,

The answer to the question 1is obtained directly from the
special cese of the Littlewood — Richerdson rule ( (31 .
p- 92). It wiil be formulated here in the form of diofﬁg-
 tine equalities and inegqualities.
ket ‘ii be natural numbers {including zero). ws will
assume them to be Brrggged so as to form the triangular
erray (in conformity with works of theoretical physicists
[4] . where the Gelfand - Ceitlin bases of irreducible
répresentations of ﬁnitary groups are freguently meant as

being enumerated by anelogous arrays):
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The following conditions must de satisfied by the numbers

L '}33- S A
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The answer to the question raised above is: <(J;)i{p}> is
equal to the pumber of distinct solutions of (1) =~ {3). Thuse

it follows
Wm (<> HPD# (0 if ent onty 1r ?_A-d
&LP for each U . ¢
i1 )

This statement was proposéd in [5] s Dag® 533, as a
eonjecture based "on 5rounds of tha'sfudz ot’&hn table in '
Murnaghan’s book ([6] p.- 154). Besides ;os.ntin; out that. d
the validity of the conjecture follows &irectlx fron ths -
known results. we went to note the following. ¥he statement
seams never to haié~hgpn explicitly formulateld and used in |
the classical theory of representations afmtﬁg symmeiric
groups [1 - 5]. In these classical presentations ths linear
ordering of fhe partitions of n "according to the firet of
nonequal rows" is used, while partial ordsring, proposed
in[S] may occure to be even more uaefﬁ} gs}inyltaﬁ by the

Proposstion. |
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4o be more specirlc. the two ordarings are as follows.

The classical linear ordering 1is: J < P means that the
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