Lithuanian Physics Journal, V. 35, No. 1, 3-5, 1995

Mathematical physics

Generating functions, Schensted algorithm,
and quater indices of permutations

A.A. Jucys
Institute of Theoretical Physics and Astronomy, A. Goshtauto 12, 2600 Vilnius, Lithuania

Received 10 November 1994

The generating function for multiplicities of irreducible representations [A] of the
symmetrical group S,, in the polynomial basis with » variables, multiplied by the product
of factors (1 —’) withi running from 1 ton, are considered. Using the Scichensted algorithm
and one of the MacMahon’s results, it is shown that the coefficient of y~ in such a product
is defined uniquely by the standard Young tableaux of the Young diagram [A]. The
corresponding rule has been found that each standard tableau adds a unit contribution to

one of the coefficients.

1. The symmetric group S, consists of a set of n!
different permutations of n objects. In the case of a many-
particle quantum-mechanical problem, the objects
rearranged are particle coordinates. Irreducible repre-
sentations of the group S,, are specified by the Young
diagrams [A].

In Ref. [1], a generating function has been found
for multiplicities of irreducible representations
A1 = Ay Ay - - -, 4,] of the symmetric group S, in the
basis of quantum states of identical particles with their
one-particle wave functions transformed by irreducible
representations of the unitary group SU,. As a factor in
this generating function, the following expression occurs:
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where p(A) = 2 (i — 1)4; and h(d, A) is the hook length
i=1
of the d-th cell (in arbitrary enumeration) of the Young
diagram [4], i. e., the sum of unity and the numbers in the
cells to the right in the same row and to the bottom in the
same column of the Young diagram [A]. The expression (1)
itself is the generating function for multiplicities Cpy;(k) of

irreducible representations [4] in the basis set of homoge-
neous polynomials of n variables with the given total
power k (see Ref. [1]). In this communication, we consider
the following polynomial (cf. Eq. (1)):
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It will be shown further that each standard Young tableau
of the Young diagram [1] makes a unit contribution to one
of the coefficients Dy (k). Therefore, it is natural to ex-

pect the result to be useful in distinguishing between re-
petitive identical irreducible representations.

2. While deriving the result of the present communi-
cation, the MacMahon’s result concerning the number of
permutations with the given quater index ([2], Sec. 3) and
the Schensted algorithm [2-4] will be used. We shall now
describe them briefly. Let us introduce the designation
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Let u; be positive integers and i u#; = n. Under the
i=1
quater index of the permutation o = §:§,...§,, of a multi-

set {1”12’ 2 P} we understand the sum

ind(0) = 2 XD, )

i=1
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where x(§;) = i if§; > §; . 1, andx(&;) = 0 otherwise. For
instance, for the permutation of the multiset {12 232 41}

o'=23121243 &)

the quater index equals ind (0') = 2+4+7 = 13. The
MacMabhon’s result is the statement that the number of
permutations with the quater index equal to k is specified
by the coefficient C, in the expansion
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The Schensted algorithm for each permutation o of
the multiset {1" ATy P} sets one-to-one correspon-
dence with two standard Young tableaux P, O of one and
the same Young diagram. By this, in the table P number i
appears y; times, and in the table Q each of the numbers
1,2,...,n appears once. For instance, for permutation
o’ (5) this algorithm yields the following two tables*):

1123 1267
P=224 , Q=348 . ™)
3 5

The Schensted algorithm is recurrent in the sense that
after constructing the tables P’ and Q' for the first i
numbers of permutation o, the algorithm brings the fol-
lowing (i + 1)-th number (let this number be ¢) according
to a certain rule. Namely, number q is placed in the first
row of P’, into the first cell from the left occupied by the
smallest number greater than q in this row. If there is no
such number, then a new cell is added from the right to the
first row of the tableaux P’ and Q’, and then number ¢ is
put in P’ and number (i + 1) in Q’. The number pushed
out of the first row, if any, is placed in the second by the
same rule, and so on. For instance, for o’ (5) ati = 7,

1124 1267
P=22 , Q' =34 . 8
3 5

The last number 3 in o’ (5) is introduced by the above
rule, so that from the pair (8) the pair of tableaux (7) is
formed.

3. Let xp(i) =, if number (i + 1) in the standard
Young tableau (containing no repeatitive numbers) is be-
neath number i or to the left of it, andxp(i) = 0 otherwise.
Let us state the main result of the present communication
as the following Theorem.

Theorem. The polynomial M;(v) (see Eq. (2)) is

equal

*) In the examples, the borders of Young diagram cells are omitted.
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where the sum is over all standard Young tableaux Q of
one and the same Young diagram [4].
As an illustration to Eq. (9), note that the standard

tableau Q of Eq. (7) makes a contribution to the polyno-

mial M[4’ 3, 1] equal t0y2+4+7.

For proving this Theorem, we shall use an important
property of the Schensted algorithm proved in Ref. [4] as
Theorem 1, which states that for any permutation
E1,82 -+, &, of the multiset {1122 g/}, for all i = 1,
2,...,n, the equalities

X&) = xg(). (10)

are satisfied.

We shall demonstrate that the expressions in the left-
hand side of Eq. (9)'and the expressions in the right-hand
side of Eq. (9) satisfy the same set of linear inhomoge-
neous equations. Since the matrix of that set will appear to
be nondegenerate, from this fact the equality (9) will
follow.

We shall confine ourselves to considering only such
multisets {1” AN o "} where appearance multiplicities
#; of positive integers i satisfy the inequalities

ByZpyZpus ... 24, (11

From the MacMahon’s result and the property (10) of the
Schensted algorithm described above, the set of equations
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follows, where K,,; are matrix elements composing jointly

the Costky matrix. Indeed, applying the Schensted algo-
rithm to all permutations of the multiset { 11 n""}
we find that permutations with different P but with the
same O make, due to Eq. (10), identical contributions.
The number of such permutations with different P at
appearance multiplicities u; of the integers i equals the

matrix element K, of the Costky matrix [5, 6].
On the other hand, denoting by h(x;) the Schur func-

tion of the variables x;,x,, . .. ,x, corresponding to the
symmetric representation specified by the single-row
Young diagram [4;] and denoting through {A} the Schur

function specified by an arbitrary Young diagram [A], we
have

[The) = ;KM{A}. (13)
i (4]



Szubstituting in Eq. (13) the powers of one variable yo, yl,

Y5, ... instead of the variables Xy, X3, X3, ..., We get (see
Refs. [5, 6])
1
- =y K, Py). (14)
H (y)!‘i )]
i=1

After multiplying both sides of Eq. (14) by (v),,, we come
to the following equality:

Y =»a -y - )a - yHa = y5a -y

Dn S ke m0) 1)
.Hl(y)"i (2]

Since the Costky matrix iK1 || is nondegenerate
[5, 6], the equalities (9) follow from Eqgs. (15) and (12).
This completes the proof of Theorem.

4. In conclusion, we present an example illustrating
the proved equality for the Young diagram (3,2, 1). Ac-
cording to the definition (2),

My, =
521 1L -1 - y»?1 - y)°

All the 16 standard Young tableaux Q of the Young
diagram [3,2, 1] are given below. Under each table, a

=y +2°+25+37 +38+ 2° + 210 +11 (16)

n
is written out. The sum z Xo(i) is indicated in the power
i=1

monomial from the sum in the right-hand side of Eq. (9) of the variable y.
123 124 134 125 135 123 124 134
45 35 25 34 24 46 36 26
6 6 6 6 6 5 5 5
y3+5 y2+4+5 y1+4+5 y2+5 y1+3+5 y3+4 y2+4 yl +4
125 135 145 126 136 126 136 146
36 26 26 34 24 35 25 25
4 4 3 5 5 4 5 3
yz+3+s yl +3+5 y1+2+5 y2+4 y1+3+4 y2-¢-3 y1+3 y1+2+4

Indeed, as it is stated by Theorem, the sum of all the
monomials indicated here equals the expression (16).
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