INNER PRODUCT OF SCHUR FUNCTIONS

A. A. Jucys UDC 512.547.212

1. In [1, 2] Littlewood introduces and studies the inmer product of Schur functions,
defined as follows. Let x)! denote the character of conjugacy class (p) in the irreducible
representation [A] of the symmetric group S, and let :

W8 = D) it (1)

Then the inner product, denoted by the symbol °, is defined as follows:
(Ayefod= 2 ganlv). | (2)

Thus, the study of inner products of Schur functions is equivalent to the study of Kronecker
products of representations of symmetric groups. However, the Schur functions introduced
here seem to be somewhat artificial. In the definition (2) all the Schur functions {A), (),
(v} depend on the same variables. In the following point of the present note it is shown
that the problem can be formulated naturally in terms of the theory of Schur functions if it
is interpreted as the problem of decomposing Schur functions of the Cartesian product of two
sets of variables in terms of the products of the Schur functions of each of the two sets of -
variables separately. A new proof of the result of Robinson-Taulbee on the coefficients

&y based on this interpretation is given in point 3. In the last point the g.., are
expressed in terms of the number of nonnegative integral cubical matrices with given sums of
matrix elements in planes.

2. By lower case Greek letters we denote partitions x=(x,>2,> ..>x, of the number
n= 25 %, and also the Ferrera—Young diagrams corresponding to them. By the same letter in
ordinary, curly, and square brackets we denote respectively the conjugacy classes of elements
of the group S,, the Schur function, and the irreducible representation of the group S_,
defined by this partition. In what follows we shall indicate sets of variables in the nota-
tion for symmetric functions. Thus, if x = {xy, x5, ..., X,), then (cf. [3, p. 861])

- 1 . 1A
{)'}xs{"}(xb Xay vaey xn)= ;T Z I\(l)xgﬂgs(a)- X (3)
x
where

L
S, = S (X, Xay ven, Xp)= n (x4 oo+ x5,

i=1

In (3) k(a) is equal to the number of elements in the conjugacy class (a) of the group S .
The decomposition inverse to (3) is [3, p. 86]

S(az).x= Z Xl[g"(;‘ }X' ] (4)
The set xy={x,y,, ... x, ¥, X2 ¥1s .oty s X,¥y, is the Cartesian product of two sets of variables
X=4X1y Xy veos Xaf . V=4V, Py vensdy |- Obviously

S(a). xy = S(a). xs(a). ye (5)

It follows from (3), (4), and (5) that
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1 IR ol - Y60
{V }x.\'= 1 Z k(ab/.!;%d‘;;)d; {)‘ Sx1 Boiye
e (6)

Multiplying both sides of (1) by &,,y:!. summing over a, and using the orthogonality property
of characters of groups, we find

l \d
o Z F ey 223008 2 = g (7)
n:

Thus, from (6) and (7) we have

{v},,—-hz“ S (M= {1t Dy (8)

We note that (8) can be interpreted as giving the decomposition of an irreducible character
of the general linear group GL(a, b) upon restricting the corresponding representations to
the subgroup GL(a) X GL(b). .

3. Using (8), we get an algorithm equivalent to the method of Robinson and Taulbee [1,
4}, for finding the numbers g,,,. We shall consider the pairs of indices of products of
variables x,y;, X,y from xy to be ordered by the following conventions:

Gy jy<ds,ry, i i<y, (9a)

K, jy<ry, £ j<r, - (9b)

It is well known {3, 5] that the coefficient of the monomial 7’3" .+ Xz in the twisted
Schur function defined by the twisting diagram « — 8 (and in the ordinary Schur function, as
the special case 8 = 0), is equal to the number of twisted tableaux of the diagram a — 8 and
of weight x, which are obtained by filling the cells of this twisted diagram x; with numbers
i(i=1, 2, ..., a) in nondecreasing order from left to right and strictly increasing from
top to bottom in each column. With the goal of finding the coefficients in the expression
{v)yy we shall fill the cells of the diagram v with pairs of indices, ordered according to
9).

The coefficient <"1 %2 - %Madw of xPx¥ ... x3{u}, in {(v},, is found as follows. We
- consider those generalized tableaux the diagram v, in which the first indices of pairs <i, j>
are identically situated, with the first 5, indices equdal to i for each i =1, 2, ..., a.
Let -~V be the twisted subdiagram of the diagram v, whose cells are occupied by the n,

pairs of indices with first indices equal to i. The requirements for filling the cells of
the twisted diagram '/ —+(-1 should be satisfied by the location of the second indices of the
pairs (the indices of the y’s) in accord with their ordering (9b). It follows from this that
these tableaux make a contribution to the coefficient sought, equal to the coefficient of
{p)y in the product of twisted Schur functions r] fvi—yi-V3 - Summing the contributions of
i=1
all possible arrangements of first indices (respectively summing over all possible v(1) | i -
1, 2, ..., a), and expressing the symmetric functions which appear in terms of the Schur
functions {p),, we find (v, 72, s NP wr

One of the methods of expressing sums of products rl {0 ="V in terms of Schur

functions, leading to the method of Robinson and Taulbee, is the following. According to the
Littlewood—Richardson rule [5, Chap. 1, Sec. 9] we decompose |+ —vi-1} (i =1, 2, ..., a)
into a linear combination of Schur functions (ordinary, not twisted ones) and we find their
products again using the same Littlewood—Richardson rule, finding, after summation, the
coefficient 7, %2 .oy Mavve-

As the last step we have

Buw= 2, (=17 (n+a—c(a), lpta—1=c(@=1), ooy hat 1=0(1)Dyy,

oeS,

(10)

where (-1)7 = +1, -1, respectively, for even and odd permutations. Here we have used the
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familiar procedure for decomposing a monogenic symmetric function in terms of Schur functions
{3, 5].

4. Now we proceed to finding a more symmetric expression for g,,,. We introduce a third
set of variables z = (z;, z;, ..., z,) and let xyz be their Cartesian product. We have

1 . . . . =

— D B L DT P P S - "
[TITII a=xmzo =27 = (11)
i=1 j=1 k=1

Here

prEpmat ¢'§gﬁ|no”'¥x'¥| vee Yo

is equal to the number of nonnegative integral cubical matrices [IMy4|| with the following
sums of numbers in planes:

b c a P a b
*i= Z Z M, ﬁj=z Z My, Y= Z Z M p. (12)

J=1 k=1 im] k=1 fm] juemi

The homogeneous symmetric function 4,,, . is the Schur function defined by the partition
consisting of one part (equal to n). The corresponding representation [n] of the group S, is
trivial with xi=1 for all (a). It follows from (7) and the orthogonality properties of
characters that

8tm) 2 =8y, . (13)
From (8) and (13) we get
hn.x):z= Z {V}xy'{v}:g Z gkuv{)‘}x{u}!{v}t' (1(“)
v Ap, v

Again using the familiar decomposition of monogenic symmetric functions in terms of Schur
functions, from (11) and (14) we find

v = Z (=" e wr gty - (15)

o€S,, TES,, PES,

The following abbreviations are used here: the parts of the partition o(\) are i,+a—a(a), Ao+
a-l-o(a-1),..,2,+1-6(l), and analogously for 7(u) and @(v). It is easy to find the numbers
P,3, from the expressions for /., . in terms of products of polynomial symmetric functions

1
ba xy:= 57 20 k@S, xSeer, » Seen, =+ ‘ (16)

P
Suppose in the partition p there are r;(p) parts equal to i. Then

kint=(TT @ r, e0)™

i=1

and from (16) we get

n @e)!)r
Pxpy = Z l_l - (r' i ) . '
l’ i=1 ir,(p) n ay! by,! n c.! (17)
1

jm1 = =

Here one has summed over the parameters satisfying the following equations:

a b c n
Z a;= Z b= Z cw=ri(p), Z ir(p)=n,

J=1 Sw=1 o=t o

n

n n
Z iaﬁlzmﬁ Z ibb‘= ﬂn Z iCir=Y,.

{m] fom] ‘ g

377



"(G861) MmodsoR

‘AT ‘[uoTjelsuexy ueyssny] sTejmoul]od IIPH PU®R Suoljzoung OF1joumAS ‘PIEUOFOBH ‘I
"(%661) €TL ‘0% ‘"I98 °'pPEOV ‘3N '20ad ,‘"S JO suoljeyuesaadex ayqronpax

-1T om3 jo uoﬂvoun I93Uuuyl 8yl Jo suorlonpax YL, ‘saqInel "I QO pur uosulqoy ‘g °p O
*(8661) PIOIXQ ‘SS9Id UOPUIIBTD

‘sdnoan jo suofjejussaadey XTIl puer siajzdoeiey) dnoin Jo L1o9Yy] oyl ‘poomdTlaTI ‘d °d
*(LS6T) 8T ‘SZI °"OoN ‘Tt

‘°00§ °‘Yael uopuo] ‘' ,‘suol3zounjy-g Jo 3onpoaxd xsuur ay3z pue wWsAYaald. ‘POoOomeTIITT ‘d °d
*(966T) 68 ‘12T "ON ‘Tt ‘20§ 'Yael

uopuo] ‘[ , ‘suorjzejuesaiadex dnoxZ otazswmis Jo jonpoad xeyosuoxy 8Yyl, ‘poomeIlaTI ‘q °qd

JIlI0 TANLVIILIT



