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Enumerated formulas are found for the number of subclasses 1n a particular
class of conjugate elements of a finite group for a number of all subclasses
and for a number of ambivalent subclasses. Simple matrix subalgebras of the
subclass algebra are indicated in group algebra and the relations of orthogo-
nality for irreducible representations of the subclass algebra are acquired.
The interrelations between the subclass algebra and algebras of double coset
classes are noted. Simple proofs of some of the known propositions are cited.

1. INTRODUCTION

The concept of a subclass was introduced by Wigner in works {1,2]. Assume that H
is the subgroup of the G group. A relation of equivalency s ~ g is assigned to G 1f there

is such an element heH so that s = hgh'l. G is subdivided with respect to this relatilon
into mutually nonintersecting classes of equivalence which are also the subclasses of the

G group with respect to the H subgroup, whose multitude is designated as PGH. Hereafter,

only the finite groups and their group algebras CG over the field of complex numbers C

will be examined. Each subclass peP®® is placed in mutually unambiguous correspondence to
the elements

Pc"ZS (1)

3&p

of the CG group algebra, called the sum of the subclass. The product of the sums of the
subclasses 1s expressed in the form of a linear combination of sums of subclasses (with
whole number coefficients), so that the multitude of elements such as (1) is the basis of

the subalgebra of the CG algebra, called the CPGH subclass algebra.

wigner in [1] (see also [2]) demonstrated that the frequencies A of appearance of

irreducible representations v of the H subgroup with limitation on 1ts irreduclble repre-
sentations A of the G finite subgroup do not exceed one when and only when the algebra of

the CPGH subclasses is commutative. This result is independently found by the authors of
works [3,4]. The following relation 1s found in [5]:

> (S =dca, (2)
Aev ‘

where d%%=|P%8], 1. .e., dGH is the number of subclasses. The equality (2) 1s one of two
basic results of Wigner's subsequent work [6] (the equality II). There is mathematical
literature dedicated to irreducible characters of subclass algebra [7,8]. The quite spe-
cific application of subclass algebra for enumerating multiparticle Feinman dlagrams is
demonstrated in works [9,10].

Simple subalgebras of the subclass algebra are indicated and examined in the next
section of this work in CG; simple proofs of certain known propositions are constructed
on this basis, and relations are found of the orthogonality for irreducible representa-
tions of the subclass algebra. Section 3 finds formulas for the number of sublcasses
which contain in a particular class adjoined elements p of the G group and for partial
© 1987 by Allerton Press, inc.
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sums ZL(ﬂY. Summing the first expressions in terms of p or the second in terms of A,
the following result is found:

Gl :
don=ll; z 2, (3)
where gp {s the number of elements in a class of adjoined elements p of the G group and hp

i{s the number of elements of the subgroup in this class (in the general case they may be-
long to different classes of the subgroup). Equality (3) for the special case when H is
the centralizer of a specific element in the group was already deduced in [9,10]. Assume
that kp is the number of elements of the XK<=G subgroup in the p class of the group. It

is useful to compare (3) with the formula for the number of double coset classes of the
group based on the H and K subgroups (section 3)

Ae=airer 2 )

In this same section 1t 1is shown that the number of subclasses in a class of adjoined ele-

ments o of the group is equal to d§.a, where Na is the centralizer of one of the elements
of the a class.

In the last, fourth, section of the work a formula is deduced for the number of am-

bivalent subclasses dgﬁ

%= i 3 (B, (5)
heH

where rz(h) is the number of solutions in the group of the equation s'=h? (s€G).

As is evident from (3)-(5), not even the tables of characters of the group and sub-
group are required to find do®, 4, and dS¥;much less information 1s required (the tables of
characters are required, in particular, when formula (2) is used for calculating dGH).

2. BASIS OF A RELATIVE, REGULAR REPRESENTATION OF THE SUBCLASS ALGEBRA

Assume that A asslgns an irreducible representation of the dimensionality fx. In
the CG group algebra the representation of A 1is placed in a mutually unambiguous corre-
spondence to the simple matrix subalgebra, whose basis 1is the (f)\)2 elements [11-13]

d“"T%T Z (bis=tians; (6)

1¢G

whose rules of multiplication are the following:
& 1€ i= B a4 (7

Here <alt]b), designate the matrix element of the matrix which represents teG in an irre-

ducible representation of A3 a and b are the basis indexes. The following expansion for
seG [11-13] is the case:

sm 3 <alsidrdhs (8)

Mad

where the summing 1is performed in terms of all nonequivalent irreducible representations
of the group. In the same way

IGl= 3 (A)F (9)
A

elements (6) are the basls of the regular representation reduced to an irreducible form,
whose other basis is comprised of the elements of the group themselves. The equalities



(6) and (8) assign the expansions of one basis through the other.

The presentation in [5] (pp. 15-17) (p. 18 in [5] should read "sufficlent" instead
of "necessary and sufficient.") will be basically followed in the rest of this sectlon.
The representations of the G group will be assumed to be relative with respect to the H
subgroup, so that the basis indexes of the representations of the group below are assigned
by three indexes v, k, and i. To avoid multilevel indexes in the k index of these three,
which differentiates and numbers the repeating irreducible representations of v of the
subgroup in the irreducible representation of the A group, A and v willl not be explicitly
indicated, but from the context (including the formulas), it is hoped that 1t will be
clear to which A and v this index 1s associated. This also applies to the 1 index, which
numbers the basis of the irreducible representation v of the subgroup. Primes will be
used to differentiate the four indexes A, v, k, and 1. Now (6) is written as

éu.vrr" i Z K8 vki), 3. (10)
F11-)

The following sums are introduced into examination:

Om % G -1d P (; CVR 11574 [ viiyy) 5. (11)
Here at fixed X and v each of the indexes k and k' assume f} ‘different values; it follows
from (7) that

OF 1o OFY e = 8558,y 3o OF e (12)

The following is demonstrated [5].

Proposition 1. The totality of elements OFs determined by the equality (11) is the
basis of the CPGH subclass algebra.

Assume that sepeP’® and assume that N is the centralizer [14] of the seG element in

the H subgroup, i.e., N is the group which consists of elements of the H subgroup which
commutate with s

N,m{heH|hsh=t=ms}, (13)
When s'=hsh-), heH, then N.=hN,h-* and, therefore,

| N,|=|Ny|=n,, (14)

i.e., the magnitude of the centralizers of all elements of this particular subclass p are
identical. After breaking H into left coset classes in terms of the subgroup N the fol-
lowing is found from (1), (13), (14):

Pe= Z hsh=1= ,:—;- Z hsh-1, ’ (15)
heH

hed,

where H" is the system of representations of the left coset classes. It follows from (15)
that the sum of the subclass commutates with each element of the subgroup

YheH, pe=hpch. (16)

Assume that E is any element from CG which commutates with each element of the H
subgroup. E 1s unambiguously expanded in terms of the basis (10):

E= Y (K|EIVEI )& vir (17)

Aevkody v, K0 1

On the other hand, the following 1s the case for heH:

LE D NR47.{1 107 4 5 0Py (18)

Aewp ks by v, 00, 10



- T IR e (18)

v kyiyi?

As a result of (7) the coefficients of the expansion in terms of the basis (10) of the
products of the elements of the CG group algebra are found from the rules of matrix mul-
tiplication. Since Eh = hE for each heH, then the matrices of expansions (17) and (18)
are commutated for each heH and, therefore, as a result of the Schur lemma [11,12,14],
the followilng 1s the case:

(vkilElv'k’i‘);-MB“.xg'h xfyGC. (19)

Comparing (10), (17), and (19), it is found that

VheH, (hE=Eh)wE= T 2,084 (20)
Ao v, ko k7

In the same way each element of the algebra of the CPGH subclasses as a result of (16),
(20) may be expanded in terms of the basis (11). It remains to show that there is a re-
verse expansion. When heH, then the following is the case:

2 YRR Rt vkiy,m 3 R [ R|E I C0R T (57t v,
§

Li,i®

X Sk | B [ vkidyym D) 8y (VK 1| 572 | vKi% = (21)

[N

=D (YR |57 vki),
i

After comparing (21) and (11), it i1s seen that the coefficients with elements of the same
subclass in Of'x are identical and in the same way OF. is the linear combination of the
sums of subclasses. This completes the proof of proposition 1.

It follows from proposition 1 that CPGH 1s isomorphous to the direct sum of simple
matrix subalgebras, each of which is assigned by the A, v pair with NA#0. In the same

way the algebra of the subclasses is semisimplistic. A direct result is the equality (2)
(when H 1s a trivial subgroup which consists of a single element - the single groups ¢,
then (2) 1s reduced to (9)).

The matrices of the coefficients of expansions of the sums of the subclasses in term
of the basis (11)

pc= D <k|pcl kD20, (22)

A v,k k?

are quasi-diagonal. Each unit on a diagonal corresponds to a fixed pair A, v and as a
result of the multiplication rules (12) assigns the representation of the subeclass algebr

This representation is irreducible or the reducability would indicate the existence in

Cali’c"'H of a basis of a dimensionality less than dGH. Assume sepeP™; it follows from (8),

(11), and (15) that

Cklpcl K=k T Cokilhsht vk D= 3 CilRI D x
kel LY Y g

(23)
x<vkr|:|vki’),(i’{h-m>,--};‘-%' ;‘ (ki s|vE i3,

Here the third equality is the result of the properties of orthogonality of the irreducib
representations of the finite groups [11-13,17]. 5eP%® is used to indicate the subeclass

consisting of elements inverse to the elements of the peP%® subclass (see [1,6]). It fol-
lows from (11) and (23) that

Ofe=rfln 2K Bl k> pe (24)

ped®

Placing expressions (22) for Pe in (23) and comparing the coefficients in both sides of
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the acquired equality, the following 1s found:

S, maCk| Dl D K" | Pl K7Y = B By B AL, (25)

per®®
The acquired relations of orthogonality (25) for the irreducible representations of the
subclass algebra generalize the relations of orthogonality for the finite group [11-13,17],
. since the latter is the special case of (25) at H = ¢.

Placing (24) in (22), (p, geP® 1s found

pe= T BEI (k| pe K (K e )2 ac=
A,k KNG (26)
S hEm ki pedelkdiae.
dews kg

Comparing the coefficients on both sides (26), it is found that

szﬁﬁ(klpc&cler‘-g},:—q Bper (27)

In the case of H = ¢ (27) is transformed into the known equality le;x‘(st'l)-s,!m, where
xl(g) is the character of the geG element in the irreducible representation of A.

In the simple matrix subalgebra of the CPGH algebra, assigned by the palr of indexes

A, v, only elements such as xe¢*, where xeC, while
= 3 Ok (28)
k

commutate with all of the elements of the subclass algebra. In the same way, the totallty
of elements elv at A, v, which assume all possible values, 1s the basls of the center of
the subclass algebra. The dimensionality of the center rc is equal to the number of A, v
pairs for which f#0. It follows directly from the rules of multiplication of the elements
of the subeclass algebra (12) that the commutators [OFe, OF%] cover the addition of the

center to CPGH and, moreover, the components of these commutators in the linear space of
the center are always zero. In other words, the following claim 1s vallid: the dimension-
ality of the linear space covered by the commutators of the subclass algebra is equal to

QdGH - rC). This is the second of the two basic results (equalitles III, IIIa) of Wigner's
work [6] (see also [8,10]).

The primitive idempotents of the center of the group algebra are [11-13]

O= Y uun (29)

ki
where the summing is performed in terms of all v, for which f}%0. The CH subalgebra in
CG 1s made up of elements such as Z..."'"’ xeC. For the primitive idempotent of the center
of the CH subalgebra, the following is the case

o= Z = z S, s (30)
i Akl

where ei, 1 is the primitive idempotent of the CH algebra; here, though, the summing is

performed in terms of all A, for which sf}%0. It follows from (1ll), (28), (29), (30), and

the rules of multiplication (7) that

S mele, (31)



3. ENUMERATIONS IN THE SUBMULTITUDES OF THE SUBCLASS ALGEBRA

To complete the above, 1t 1is expedient to draw a brief conclusion of the formula for
the number dﬁH of the double coset classes of the G group in terms of the H, K subgroups.

This is even more the case due to the fact that in the literature known to the author,
where this concept 1s encountered ([14-18], et al.), no such formulas are discovered (an

incorrect expression for dgH is given on p. 29 in [17]1). The double coset class 1is a

multitude of KrH<eG, where r 1s one of its representations. KrH may be considered as the
orbit of the subgroup K in an HtG representation of the G group induced by a trivial
representation of the H subgroup. One and only one trivial representation is encountered

in each orbit. Therefore, dgH is equal to the number of trivial representations of the K
subgroup in H4G. The basls of the representation H$G 1in the CG 1s |G|/ |H| elements

tH;, t,eG,, (32)

where Hc'Zmrh and Gn is a system of representatlons of the left coset G classes 1in terms
of H. The element s¢G in H{G 1is represented by the formulation

J:f.Hchstlyc, 'IGG". (33)

The character xGH(s) of the element seG is found in an H?%G representation. As a result
of (33), it is equal to the number of such ty that ' seH, but with such ¢ and (4h)s(4h)el
for any heH. Therefore, the product of IHIXGH(S) shows how many times in the totality of

elements of tst'l at t which traverses the values of all elements of the group the ele-
ments of the H subgroup are encountered. This totality is a class of adjolned elements
(assume that this is the p class), and each of the encountered elements appears IGl/gp

times. Consequently, for any element of this class, se, the following 1is found:
*aa ()= 15T 2. (34)

The equality (4) is found from (34), after using the relations of the orthogonality of
the irreducible characters for finding the frequency of the trivial representation of the
K subgroup in H*%G.

Assume that v is the trivial representation of the subgroup H. Each double coset

class L = HrH 1s a combination of a certain number of subclasses (since hHth'l = HrH for

each heH). Assume that
le= 2 t- (35)
te L
The elements of the CG, such as (35), make up the subalgebra in the subclass algebra (the

CDGH algebra of the dual coset classes). The eeCP element belongs to the CDGH
if and only if

algebra

ﬁccnlicnc, (36)

where He= H/|H|=¢=¢, (1 here assumes only one value). In the basis (11) the elements &%,

and only they have the property (36). In the same way their number is equal to the number
of double coset classes of the G group in terms of the H subgroup (i.e., the dimensionality

of the CDGH algebra). Thus, the following enumerating result is found (compare (4)):
|Gl »
S (Y =dfu=1gr 2 2. (37)
1]

A

Now the author finds how many subclasses are contained in the class of adjoined ele-
ments o of the G group. The author examines the transitive representation of G through
conjugation for a:seG, which is represented in it by the formulation



s:tests=l, tea. (38)

The representation (38) is isomorphouse to N,$G, where Nu is the stabilizer of one (any,

but a fixed one) element of the a class (compare (13) and (1l4) at H = G). The subclass

is an orbit of the H subgroup in the basis of the (38) representation. But the number of
the orbits and in the same way the number dgH of the subclasses in the o class as a result

of the information presented at the beginning of the section is equal to the number of
double coset classes of the G group in terms of the H and Na subgroups (see (4))

dgH mdy = uv',ct;;'m h'::‘ ’ ' (39)
e

where npa is the number of elements of the Na subgroup in the class of adjoined elements
8 of the G group.

H

The author finds the full number of dG subclasses. The following is true:

|G} "I%""’nx-“gu’ Qe =1y 8= G| -l%' (40)

where Qpa is the number of ordered palrs of commutating elements of the group, one of
which belongs to the o class, while the other belongs to the p class, i.e.,

Qou={{ s, t)|stms, €2, tep}|. (41)

The symmetry of Qpa with respect to the transposition of the indexes follows from (41),

while the other equalities in (40) are the direct results of definitions. Since an,-lNu,
it follows from (40) that

Zm"’:‘:'@ =l (42)

Having summed (39) in terms of a and after using (42), formula (3) is found for the number
of all subclasses,.

The authors fihd the dimensionality Ty of the subalgebra of the CPGH algebra, which

consists of elements such as e pg, peP. On one hand, as a result of (1ll), (12), and (29)
n= Y (A (43)

However, the author uses the approach which was already used in deducing (39). Representa-
tion A willl be assumed to be assigned in any basis, and the following transform at seG
is examined: ‘

s:6h,reseh s = D (as|ads<bls by ek, (44)

o, ¥

Here the equality 1s a result of (7), (8). The transforms (44) assign the representation
A x A of the G group, which are the direct product of representation A and A representa-

tion which 1is contragradient to it. The character of the sep element in A x A is equal to
LG)* , where xz and (1))* are the characters of the class p in the A and X representations,

respectively; the sign * Iindicates complex conjugation. The above follows from (44) since,
assuming a' = a and b' = b and summing, the following is found for the character of repre-
sentation (44):

tp= D <als|ada<blst|b)=
abd

=(Z <alslan) (T <sisis32) =0 . (45)

The following 1s true 1n the basis (10):



S bk, vwrhtm T CEIRID TRy i
- ™y x (46)
"FZ‘. 8oy 810 8o e T éu-.vm-"'jl:!' &.-'34«'05':1(-

Hence it follows that the unknown number Ty is equal to the frequency of appearance of

the trivial representation of the H subgroup in the (44) representation, i.e., in A x X.
The only remaining thing is to use the properties of orthogonality of the characters

n=rar 3 18 h= 3 U (47)
') v
Here |z| 1s the modulus of the complex number z.

Summing (47) in terms of X and using the properties of orthogonallity of the columns
in the tables of the irreducible characters of the finite groups, the second proof of
equality (3) 1is acquired.

4, AMBIVALENT SUBCLASSES
The class of adjoined elements of a group which contain s'l along which each s is

called ambivalent. It 1s natural that this term is used to characterize the subclasses
which have an analogous property. The following is true for, the ambivalent subclass:

P=p, pc=pc. (48)
Since (s)-it=mt-1s-', then
N AN\
@cld=lcpc, p, 1eP°R. (49)

It follows from (48), (49) that when all subclasses are ambivalent, then the algebra of
the subclasses is commutative. But as a result of proposition 1 the commutativism means
that the dimensionality (/' of simple matrix subalgebras of the CPGH algebra does not ex-

ceed one. Therefore, the following claim is valid [1-4]: if all of the subclasses of the
G group are ambivalent with respect to the H subgroup, then the frequenciles of representa-
tions of the subgroup in the limitation on their irreducible representations of the group
do not exceed one. The condition here 1s sufficient, but not necessary.

The author finds how many ambivalent subclasses are contained in the multitude of

subclasses PGHJ The following is introduced into examination over and above the already
examined transformations in the group algebra (compare (44)) for this purpose:

sitrests™y, 3, teG, (50)
and the following as well:
, I:twit=, t€G. (51)

It is directly tested that the transformations (50) and (51) commutate and in the same
way in totality are isomorphous to the direct product of the G x S2 group, where 82 =

= {g, I} group, which consists of two elements. It was already noted that the subeclass
is the orbit of _the H subgroup in the representation (50) or the basis of the trivial
representation v of the H subgroup in the CG group algebra (compare (16), (46)), acquired
by limiting representation (50) to H. In accordance with the noted commutation, transfor-
mation (51) does not emerge from the subclass algebra:

I:pcvedes Pes PcaCPA, (52)
Reduction with respect to 52 is quite simple

(Pc+he)s Pcs PceCPR, (53a)
is the basis of the symmetrical representation [2], while

(Pe"ﬁc)o Pos z’cGCP"', (53b)



is the basis of the antisymmetrical representation [12]. It follows from (53a, 53b) that
the number of ambivalent subclasses d is equal to the difference in the frequencies of
the representations [2] and [1 ] of the 82 group in the basis of the subclass algebra.

Or it 1is equal to the difference 1in the frequencies of the representations of ¥x{2] and
Ix[19] of the H x S, subgroup in the representation (50), (51) in the basls of the CG group
algebra. The above in terms of the characters of the groups means the following:

7=t 3 (Y W+YUxB) =7 3 (YW =vAx )=
hel AeH

(54)
=57 & YU xh),
heH

where yY(h) and v(I x h) are the characters of the corresponding elements in the limitation
of (50), (51) group G x S, on the subgroup H x S,

Y(I x h) is found. In the basis of the relative regular representation of the G
group (6) the transformation of I has the following appearance:

LA (55)
(55) 1s the direct consequence of (6), (51) and the Schur-Auerbach theorem [17] about the
unitary state of the irreducible representations of the finite groups (the sense of the #
designation here 1is unambiguous). When the representation A and that of X contragradient
to it are not equivalent, then, since (55) means a shift from one to the other, the space

of the dimensionality 2(fx)2, assigned by A and X, introduces a zero contribution to

y(I x h), since the two spaces are invariant with respect to H. Such representations are

called third order representations [17,19]. But when the representations A and X are

equivalent, then there is a unitary matrix ||u, bl[, which transforms one representation
2

into the other and, therefore, for such A (see (6))

@0 = Z U, ¢ €, £ U3, ye (56)
In this case (see [19]):
Ug, o ™ C)\Ug, o (57)
where CA = 1 for first order representations (the matrices of the representations are

real) and with cy = -1 for second order representations.tthe characters are real, but the

representations are not equivalent to the real ones). For representations of these two
orders, the following 1s true as a result of (7), (8), (56):

Ixhielymh(e )*h=i=

(58)
- Z BVt ouf, y <a' | K72 D)) € 4.

oW, 8% 0

Having assumed b" = b and a" = g, having summed the diagonal coefficients of transfor-
mation (58) in terms of g, b, and having used (57), the following is found for the char-
acter 1n space assigned by the irreducible representation A of the discussed two orders:

P xhy=cyx* (). (59)

Thus, assuming cy = 0 for representations of the third order, the following is found for
the full character:

YA xh)= 3 e x*(h). (60)
A

As follows from the results of Frobenius (see [19]), the sum in the right side of
(60) 1s equal to the number rz(h) solutions in the group of equation s*=h?seG. Thus, ex-



Sy Y¥SS ueTUBNU3TT dU3 JO 23n3T3sul soTsfud 9ghT Joqusoad:+T

*996T ‘MOOSON ‘aTH ‘[uotael
yea] UeISSnNYy] SwaTqOJId soTsfyd 03 uotaeoTTddy S3T DPuU® Lxoayl dnoan ‘ysswaswWeH ‘KW ‘61
*gL6T “MOOSOK
‘eyneN ‘[uelssny UT] suoTasejussaadey jJo £Laosyl 8y3l Jo squswaTd ‘AOTTBJIIY 'V 'V "8I
*EGHT “HMIOR MeN ‘gsaad OTwepeOV ‘gsdnoan 943TUTd JO suojgeoFTddy ‘juowo] °§ L LT
*L96T “MOOSON feyneN ‘[ueTssny ut] Aaoayl dnodp fysoany °H "V 91
~TH6T ‘gSh "4 Lt
-Toa €°00g ‘uUseW "JBUWY °"TING afsdnoad 83Tuld 3O §99500 9TQNOP Ul ‘fauread S L 6T
*696T “MOOSOW ‘eyneN ‘[uotjelsuBd] uelssny] SeIQBTV SAT3
-eyoossy pue sdnoap 83Tuld 3O suoTjeaussaaday Jo LIodYUlL ¢gouTey °I PuB ST3aAND 0 “HI
*GLET
€1 +d “3Iox MmeN Sggaad OTWOPBOY ¢ (xo031pd) TQ90T1 "W "d SguotTaeoTTddy S3T DPUuB Laosyl dnoap
Ul L fSOTUBYOSUW umjuenb uy sBaqa3TE sTdwrsTwWss pue sdnoa® o4TUTd, ‘ureTy ‘r °d €T
*€96T ‘wep
-goqsuy ¢ Auedwo) BUTUSTTANd pUBTTOH-U3aI0N cgdnoapn Jo suoljejussaadsy sgauasog ‘H 2T
*0£6T “HaOX
maN ‘suorjeoiiand JI3A0Qd ¢ goTURYUOSK umjuend pue sdnoan Jo KLxosayl oul ‘T4eM °H *TT
*086T “LnEE
d ¢TT cou ‘€T °T0A ‘y *sfuyg °r . fsdnoadqgns €371 03 dnoald ® JO mﬂOHuMpswmmemm s1qIoNp
-2JJT JO UOT30TJa3sad 3Uj Pue sweJSeIp uUOTaOUNJ uUSdJI sToT34®I-N, ‘useyead °S ‘p 0T
. “gL6T ‘g6E *d ‘gEIT
‘ou ‘qnE " TOA ¢y -oo0g *£Loy °00ad 4 Ssweadetp JO 2aN3onJals pue UoOT4BOTJTSSEID I - suread
-eTp Apoq Auew DUB faosys dnoap, ‘aoursal °"H "H 1] pue ‘3iayl I ¢ Teag8uUds0y °D ‘6
. GL6T ‘625 +d ‘ogh "d Loz -TOA ‘°o0§ "UIEW ‘qswy °SUBIL
. fdnoadqns pue dnoa® 24TUTJ © UITM DS3BIDOSSE 2IQoBT® SSBTO4NS 9l fjotaey ‘'f '8
"H16T
‘g9 *d ‘6z "To4a ‘eIqo3TV °r . fsdnoad 83Tutd uo suoTaouny TeoTI2UdS, ‘staval ‘d L "
TLET ‘TRT 'd ‘6nGT tou ‘gt "Toa ‘Y "208 - foy *00ad ,‘dnoa3
-gqns ® 03 sdnoad Jo suoTsejuasaadsd’ 2TqQTONPaIIT JO UOT40TI3SdY, ‘JouBIM ‘d "€ °9
~0L6T ‘LT *d ‘snyuria ‘[UBTS
-sny Uf] S$8OUS8TOS Hmoaum50npmznamoﬂmhnm ut eaadeQ g, 0388} * “UOTIBIISSSTA ssdnoan (N)7ID

pue cm Jo suofaejudsasaday Jo Raosyl 9yl 3noaqy suol3send utelasd fgTsany 'V ‘V-'V S
-GL6T “€6T *d ‘€T -ou ‘LE

*ToA €°puedsS °UIBN :.mﬁoaumucmmohamn dnoa® pe3oTJa3sad uo weJaosY3l Vau R ig =165 7.9 Y G 1
+216T “6gOT -d G -ou €90¢C
sToA €-2TJ-"3BW "¥SSS NVd . fpoyssuw BUuTJdamal 1eIjuenbas ® Bulsn ednoa® 93TUTJ Ul sSuoTjeluss

~sadaa Buraseadsa JO UOT3BOTITSUS3UI, s pouedaasy) I ‘A pue ‘usu N "V ‘uspy 'V ‘g ¢
.mwm.ﬂ qmmh. .nw am *ou QSN. .HO> n-OOW

*yqen cJeuy *T1Ingd L $€07sfyd mau pue PTO up setdroutad Lxgoumig, SJoUBIM °d "d ¢
96T ‘TET *d ‘wepaalsuy ¢ fuedwo) BUTUSTTANd PUBTTOH-UIION ¢ (sao3TPIE) "T®
a9 ooTg 4 ‘sorsfud Ut gpousenN TeOTI8JI08UL dnoan pue otdoosoasoeds :UT . $oouo ueyjl SJa0u
dnoaZqns 3yj3 Jo uojejussaadad UFe3UuUOd 30U op ¢dnoalqns ® JO suofseauasaadaa €€ pPaJapTs

-uoo ‘dnoa3d ® JO suoTjriuassadaa aTqToNpeII} 89Ul 3B'UI UOT3TPUCD, SJauBIM 4 T T

S3INIY3IA3Y

.mMU gosseTOONS jusTBATAWE JO Jaqumu 8yl JI0J (09) pue (ng) woaj punog mﬁﬁmv QOﬂmmwhm



