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It is shown that the number /, of all distinct Latin squares of the nth order
appears as a structure constant of the algebra defined on the Magic squares of
the same order. The algebra is isomorphic to the algebra of double cosets of
the symmetric group of degree n* with respect to the intransitive subgroup of
all substitutigns in the n sets of transitivity, each set being of cardinality n.
The representation theory makes it possible then to express /, in terms of eigen-
values of a certain element of the algebra.

1. INTRODUCTION

The Latin square of the nth order is usually defined [1] as an arrangement
in the square table of n distinct symbols subject to conditions that each
symbol appears in each row and in each column exactly once. A more
convenient definition used in this paper is in terms of zero—one cubic
matrices. Such a matrix || a;;; || of the nth order represents a Latin square
of the same order if

Z Aijx = Z Aijx = Z A = 1. 1)

And conversely, each Latin square can be represented by the matrix,
obeying (1). The one-to-one correspondence between the two sets can be
stated by the rule: ag;;, = 1 if and only if there is the kth symbol placed in
the intersection of the ith row and jth column of the corresponding
Latin square, otherwise a;;, = 0.

There is a well-known algebraic interpretation of the Latin squares:
each of them defines the quasi-group. The object of the present note is to

reveal an algebraic significance .of the Latin squares of a different origin.
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In Section 2 it is shown that to obtain one of the structure constants of the
algebra defined herein one must count the Latin squares of the given order.
The combinatorial problem of enumeration of the Latin squares survived
in all Harary’s lists [2] of unsolved enumerational problems of the graph
theory. The natural generalization of this problem can be suggested:
to find all the structure constants of the algebra under discussion. On the
other hand, the more general algebras of the same type could be defined
and considered. This is, however, a separate theme and will not be
discussed here.

In Section 3 the expression is given for the number of distinct Latin
squares (i.e., for the corresponding structure constant) in terms of eigen-
values of a certain element of the algebra. At the present stage the
expression cannot be regarded as a counting formula because the author
has not succeeded in obtaining compact formulas for the eigenvalues.
However, it is not obvious that such formulas do not exist.

References [11-15] are devoted to the obtaining of the numbers of the
Latin squares and their equivalence classes up to and including the
eight order by direct methods.

2. AN ALGEBRA ON MAGIC SQUARES

Let m = || m;; || be a square matrix of the order » whose elements are
natural numbers (including zero). If all the row and column sums of the
matrix are equal, it is called a Magic square of the nth order. In what
follows we shall be concerned with the set M of Magic squares having row
and column sums equal to the order of the square. That is, m € M if and
only if

Z m;; = Z m;; = n. 2
i=1

J=1

Let the algebra 4, over the field C of complex numbers, with the set M as
the basis of this algebra, be defined by the following multiplication rule.
If r, s € M, then

rs = Z YTstt’ (3)

teM

where structure constant y,,, is defined by

Vrot = )j( 1 ta! 1 a,-,-,c!). @

i,k=1 t,d, k=1
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Here the summation is taken with respect to all the cubic matrices || a;;y ||
of the order n whose elements are natural numbers satisfying the equations

Z Qi = Tj (4a)
k=1
Z Qi = Six » (4b)
i=1
Z Aijr = Lir - (40)
i=1

There exists the element e € M such that
e; =1 &)

for each i and each j. From (1), (4), and (5) it follows immediately that the
structure constant y,,, of A4, is equal to the number /, of distinct Latin
squares of the nth order.

To reveal the structure and properties of the algebra 4,, as well as those
of representations of 4, , we shall show that 4, is isomorphic to the
certain subalgebra of the symmetric group algebra. For this let us consider
the symmetric group S(#%) of all permutations of the set S of cardinality
| S| =n% Let P = {X,, X,,..., X,,} be the partition of S such that

V [X;CS, | X;| =nX;,NX; = 6;X,] (6)

X X;

(0:;X; equals X; if i = j and is the empty set if i 7= j). Denote by S"(n)
the subgroup of S(n?):

§") = {o €S V¥ [o®)e X, )

X,€P be X,

Clearly, S*(n) is the direct product of n symmetric groups of separate
permutations of n subsets X; € P. The set

m= ) togor, o € S(n?), 8)
7,7'€S™(n)

is called the double coset [3] of the group S(n?) with respect to the sub-
group S™(n). From (6)—(8) it follows that the double coset (8) can also be
defined by

m =

o (U eo) =mll. o

beX;

peSm): W [

X;. X;eP
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where the matrix || m;; | is one of the Magic squares of the nth order.
Indeed, because of the left and the right group-multiplication in (8) by
permutations from S”(n), there is no need to indicate which elements of X
are substituted for the elements of X; and which are the last ones in order
to decide to which double coset a given permutation p € S(n?) belongs.
It is sufficient only to indicate the number m;; of the elements. Thus, the
one-to-one correspondence between the two sets (the set M and the set of
double cosets) is stated, and so it is reasonable to use the same notation for
both the sets.
Leto,er, 0,€5, 0,€t (r,s,te M) and

0r° 03 = Oy, (10)
let

Sie = X; N (U ar(b)), where Q0 = X; N ( U as(c)) 8

beQ cEXk

and
Qi = | S | (12)

From (9)-(12) it follows that the matrix || a,;; || satisfies equations (4a)—(4c).
Now we ask: What is the number of different pairs <o, , o) of permu-
tations o, € r, o, € s characterized according to (11) and (12) by the same
matrix || a;;| and their product giving the same permutation o,€t?
There are [T; 51 i VTT; j.ee1 @i | pOssibilities (depending upon <o, , o,)
for the sets S;;; (i,j, kK = 1, 2,..., n) to be. Moreover, there are (n!)” of
pairs of interest <o, o 771, 7 o 0,) having the same sets S;;; and differing
by the permutations 7 € S*(n). Thus the number of pairs in question is

ﬁ t! | 1 a,-,-k!). (13)

1 t,J,k=1

(2

o

From this it follows that the set {m°: m € M} of elements

m =1/ Y o, meM, (14)

oEM

of the group algebra A,z of S(n?) (over C) is the basis of the subalgebra
A,°, isomorphic to 4, . Indeed, from (10)-(14) we obtain

reos? = z Yrstl® (15)

teM
with y,,; obeying (4)-(4¢c). In the isomorphism A4,° <> 4,:

me < m.
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Thus the number /, of the Latin squares of the nth order appears
naturally in the symmetric group theory. The last one being comparatively
well developed [4, 5], one can hope to obtain some results on /, . Before
proceeding to the discussion of this subject, we shall show that there is a
subalgebra of A, in which /, appears in the same way as in 4, .

For this let us consider the symmetric group S(n) of all the permutations
of the set P = {X; , X, ,..., Xn}. We find immediately that for any p € S5(n)

poe’ =¢e%cp = e (16)

The set of permutations p o 7, where p € S(n), T € S"(n) constitutes one of
the Kranz groups (so named after Pélya [6]; see also [7,8,9]) for
which the notation S(n)[S(r)] can be used. Because S™(n) is the subgroup of
S(n)[S(n)], the set M’ of double cosets of S(n?) with respect to the subgroup
S(n)[S(n)] gives some partition of the set M. Thus the set {(m°): m’ € M'}

(m?) =QA/@mh)™) ¥ o, meM, (7

is the basis of some subalgebra (4,°) of 4,°. From (16) it follows that
| (o) = e°. (18)

Denoting the structure constant of (4,°)’ by v, we have

'y;'e'e’ = Yeee — ln . (19)

3. EXPRESSION OF /, IN TERMS OF EIGENVALUES OF e

If
a= Y a(o)o ( v [a(cr)EC]),

o€ S(n?) oeS(n?)

then let us denote by 4 the element of Ag(,2):

d= Y a(o)o,

ceS(n2)
where o1 is the inverse of 0. We have
é° = e°. (20)

Indeed, let X; = {Xi; , Xiz »...» Xin} (X; € P). As a representative of double
coset e we can choose the permutation

mo
G, = H (Xaxxrs) = 0;1, (21)

i>k=1
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where (x;,Xx;) is the transposition of the two elements and [ [° denotes the
product with respect to the group composition. Now substituting o,
for o in (8) and replacing the permutations by their inverses, we obtain (20).
It is well known [3] that there exists a unitary basis for any irreducible
representation A of a finite group over C. Because of (20), in such a basis
e would be represented by the hermitian matrix. Thus the basis
B, = {b;, b, ,..., by(»} of the irreducible representation A of dimension
fQ) of S(n?) (and thereby of Ag(,2) in which e is represented by the real
diagonal matrix || EXS,, = E;|| can be found. Moreover, because of

poe’ =¢e%op =e° (22)

for any p’ € SM)[S(n)] (see (17), (18)), B, can be presumed to be the basis
of the representation of S(n®) reduced with respect to the subgroup
Sn)[S(n)]. Let

0/ = (fW/m2) Y wuifo)o? (23)
ceS(n?)
be the primitive idempotents of the group algebra corresponding to the
representation (u};(c) are diagonal elements of the matrix representing o).
Now again because of (22), in the expansion

Q)
e’ = Z Z E{‘O,‘A (24)
A i=1
E; vanish for all subscripts, except those corresponding to the basic
elements b; € B, obeying

o'b; = b, 25)

for any p’ € S(m)[S(n)]. To find the number p(A) of such elements in B,
one must search for the number of appearances of the trivial representation
(25) of S(n)[S(n)] in the irreducible representation A of S(n%). By the
Frobenius reciprocity law, the numbers p(A) appear as the coefficients in
the reduction of the symmetrized outer product of the symmetric group
representations [4, p. 66; 8; 9]:

[n] © [n] = X, pPW[A], (26)

where [n] is the trivial representation of the symmetric group of degree n
and [A] is an arbitrary one. Thus, letting the first p(A) subscripts correspond
to the trivial representation of S(n)[S(n)], we write

(1)

e’ = Z Z E,,;/\Oi’\. (27)

A i=1
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Now it follows (i) from the definition of ¢°, (ii) from (20), (iii) from (3), (19)
and (20) that the coefficient of the unit element of the group, corre-
spondingly,
(1) ine°isO,
(i) ine’oceisl, (28)
(i) ine®oe’ce’isl,.
Because of orthogonality of the idempotents (00 OF = §,):8,7:0),

from (23), (27), and (28) by comparing the coefficients of the unit element
on both sides of the three corresponding equations we find that

2(})
AmY YO Y EX =0, 29)
2(2)
1/ Y () };, (EN? = 1, (30)
(1)
A/ 3 fQ) Y (EN =1,. €2))
A i=1

To obtain these equations was the aim of this section. The following
equation is useful for checking the expansions (26):

A/n2) X f Q) pQ) = 1/, (32)

and is obtained by setting m = n and [u] = [v] = [n] in [4, Eq. (3.511),
p. 66]. Formulas for the dimensions f()) are known [4, 5].

We conclude with some remarks. It seems to us that for obtaining the
general formulas for the eigenvalues E,* to be substituted in (31), some
further developments of Young’s substitutional analysis [5] are needed.
For the very special simple cases when p(\) = 1, the character theory
[4, 10] can be used to obtain the eigenvalues, which in the case of n — 3 are
(all needed to calculate Z,)

E1[9] — 28. 33’ EP’Z] — 78, 32, E{s.s] = 4. 3,
E1[5.2.2] — 92. 3, E1[4.4.1] — —2%.3

To see what form the eigenvalues E; for arbitrary n take, again characters
were used and it was found that (in these cases also, p(A) = 1)

- n!)r _ nt)"
El[nz,ol = (n!)", El[n2 2.21 __ ( n) El[n2 8.3] __ 2( 2) ]

n

b
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These seem to be sufficiently simple. So we are expressing the hope of
further developments on indicated lines or related ones, i.e., of investi-
gations of the algebra A, with or without an explicit implication of the
symmetric group representation theory.

Note added in proof. The author would like to thank the referee for drawing his
attention to a recent paper by R. Alter (Amer. Math. Monthly 82 (1975), 632). The
reader can find there an account of the present stage of actual Latin square enumera-
tions, including the recent result by S. E. Bammel and J. Rothstein (J. Discrete Math.
11 (1975), 93) on the enumeration of ninth-order Latin squares. Further references
are also found there.
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