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The bijection between plane partitions and
nonnegative integer matrices

A. A. Jucys

Abstract. The one-to-one correspondence between the set of plane partitions with
r rows and m columns and the set of matrices of nonnegative integers with the same
numbers of rows and columns has been constructed.

1. Restricted plane partition is the matrix ||a;;|| with » rows and m columns the
elements of which turn to be nonnegative integers, satisfying:

aij 2aiy for 1<j<kgm, i=1,...,n @)

ajizar for 1<j<kgr, i=1,....m (2)

It means that the matrix elements are nonincreasing from the left upper corner
both in the rows and in the columns. Much information on plane partitions can
be found in [1-5], especially regarding the generating functions for the numbers of
distinct plane partitions with various restrictions imposed, additional as well, or
some restrictions deleted (e.g., the finiteness of r or m).

In the present note the one-to-one correspondence between the set of restricted
plane partitions and the set of nonnegative integer matrices ||b;;|| with r rows and m
columns has been constructed. Let us give an example; the following two matrices
are the images of each other in the bijection (r = m = 4):

10 10 9 4 1 0 21
9 5 3 2 21 0 2

“ai'j” = 7 3 1 ol “b"i" = 00 3 1 (3)
3 0 0 O 01 2 0

It would be interesting to compars the correspondence presented here with analo-
gous ones [5-8] based on the use of Schensted algorithm [9].

In the course of the construction of the bijection we prove the following theorem
on generating function, the some of the known ones being the special cases of the
theorem.
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THEOREM. In the expansion

rm =1\ -1
1T (- 11 )
i=l1j=1 ' I=1-i

= Z Z E C(k(—r+l),k(—r+2), (4)

E(=r+1)=0k(-r+2)=0 k(m-1)=0

m-—1
ooy k(m =1))z* H yf(‘)
l=—r+41

the coefficient C(k(—r + 1),k(~r + 2),...,k(m — 1)) is equal to the number of
restricted plane partitions with the sums

> aij = k(l) (k: Z— k(1) =Z§:a.-,-). (5)
j=i-1 .

l==r41 i=1 j=1

In the bijection for the corresponding images ||b;;|| of ||a;;|| for nonnegative I:

E 2 bij = k(l), (6)

i=1 j=i41

and for nonpositive l:

3D b = k(). (7

i==I{41j=1

Assuming in (4) y = 1 for all [ and letting m — oo we obtain the well known
result of MacMahon [2] on generating function for the number of plane partitions
with r rows (eq. (11.2.14) in [1]). On the other hand, let m — oo and let us replace
each row of [|a;;|], itself being a linear partition; by the conjugate partition. We thus
obtain that the restriction of finiteness of m may be replaced by the requirement
that the greatest part of the plane r-rowed partition must not exceed m. Assuming
then in (4) for all I # 0, y; = 1, we achieve one of the results of the work [4] letting
Yo = q. .

Now let us proceed with the actual construction of the bijection.

2. The bijection is constructed recursively. In the construction of the bijection
two notions are essential: the insertion algorithm and the order of application of
the insertion algorithm. In the process of the application of the insertion algorithm
the value of some matrix element b,, is decreased by one while the sum )P 5 Bij is
increased by (s + t — 1) because the values of such a number of matrix elements
of ||a;;|| are increased by one. The process begins with the matrix llbi;l| and the
zero plane partition and continues until {|b;;|| is zeroed and simultaneously the final
restricted plane partition [|a;;|| is constructed. Let us describe this thoroughly.
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Order of application of the insertion algorithm is the following:
bim,bim=1,...,011,02m, bam-1,..., 021, 03m, b3m-1, ..., br1. (8)

In the first step of the application the value of the first (from the left) nonzero
matrix element in (8) is decreased by one. After n applications of the insertion
algorithm the sequence (8) is replaced by the sequences

/ ! ! ! / ] ! / ] (8')
ImrYim-1 Y11 Y2msy V2m=1>* -y V21H) Y3mr»Y3m-19 1 Yr1 "

Obviously here Y, . bi; = 3=, ; bij — n. In the (n + 1)-th step of the application of
the insertion algorithm the value of the first nonzero element of the sequence (8')
is decreased by one. And so on until all the elements b;; of (8) are zeroed.

The insertion algorithm begins with the plane partition all matrix elements
(parts) of which are zero. Let by, be the first nonzero element in (8) (the rows are
numbered from the first nonzero one). The first step of the algorithm decreases b,
by one and istead of zero plane partition constructs the plane partition with v once

in the first row: .

|111...10...0|. 9)

After n applications of the insertion algorithm the plane partition ||aj;|| is con-
structed. Now let us describe the (n + 1)-th application of the insertion algorithm
to ||a;|| to give as the result the plane partltlon ||a,]|| Let b,; be the first nonzero
element in (8). Then begin by increasing aj; by one, i.e.,

a’llt = allt + l. (10)
If a};_; = a};, then again :
af;_y =ayg +1. (10°)
And it proceeds until for some 7 a},_; > af,. Then increase a, by one, i.e.,
af, = ay, +1. (11)
If a,_; = ab,, then again . ’
@31 = @1, + 1. (11%)

And it proceeds until for some ¢ a5,_; > aj,. Then go to the third row and
increase aj, by one. .. And so on until the (n + 1)-th step of the insertion algorithm
terminates by increasing by one the first element of the s-th row:

a}y =ay +1. (12)
Note. For the sake of rigorousity it must be assumed that for all ¢

aio = dfy = af = oo. (13)

e

In other words, when the element aj; of the first column is increased by one, the
insertion algorithm proceeds with the first element of subsequent row of the plane
partition.
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Example. For the matrix ||b;;|| (3) the sequence (8) is
1,2,0,1,2,0,1,2,1,3,0,0,0,2,1,0.

The plane partition (9) is:
1111)).

After n = 11, application of the insertion algorithm, the sequence (8') is
9,0,0,0,0,0,0,0,0,2,0,0,0,2,1,0 (8'e)

and the plane partition ||aj;|| is:

5
4
) (14)
0

O = W N
OO N

6

5

lagsll = |3

0

12-th step of the insertion algorithm, applied to (14), constructs the plane partition

6 6 6 4
5 5 3 2
lagi={3 5 3 2 (15)
0 0 00
and replaces first nonzero number 2 in (8'e) by 1.

3. Let us prove that the correspondence constructed is one-to-one or, in other
words, that the function F: ||b;;|| — [|a;;|| is bijective.

PROPOSITION 1. The function F: ||b;;]| — ||ai;|| constructed is injective.

Proof. It must be shown that F maps two different matrices onto two different
plane partitions. The proof is by induction due to recursive character of the algo-
rithm. For the matrices [|b;;|| with only the first row nonzero the proposition is true
because the corresponding plane partition constructed by the algorithm is simply
linear [1] (one-row) partition:

D b, 3 b, D biise ., bimet + bim, bim

i=1 1=2 i=3

. (16)

(In the case of all the b;; = 0 the statement remains true as well.) Let the Propo-
sition 1 be true for the plane partitions, constructed by n steps of application of
the insertion algorithm. Then for the two sequences (8') with the same elements
preceeding the ome in the st-position and, maybe, differing by b, # b, the two
plane partitions constructed by (n + 1)-th application of the insertion algorithm -
equals each other if and only if b}, > 0 and b,, > 0. This statement completes the

proof.
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PRroPOSITION 2. The function F: ||bij|l — llas;l| constructed is surjective.

Proof. We must show that set of matrices ||bi;|| is mapped by F onto the set
of all restricted plane partitions. The proof is by the construction and the use of
generating functions with the simultaneous proof of the first part (eq. (4), (5)) of the
theorem formulated in the first section. Let us introduce the notion of the coordinate
of the matrix elements a;; and b;; of the matrices |la;;|| and ||bs;|| we are working
with as being equal to y(j—) = Yj-i- Thus we have (r+m— 1) different coordinates
Yertls Y=rt2,+ -1 Y0y -+ 3 Ym—1, the coordinates of all the matrix elements on the
same diagonal being equal (thus, yo is the coordinate of all the matrix elements on
the leading diagonal). With each restricted plane partition ||a;;|| let us associate
the product

I T @i-0% = £(llassl) (17)

i=lj=1

and let us assume in what follows that the coordinates are complex variables satisfy-
ing |y} < 1 for all indices I. It follows from the description of the insertion algorithm
and from (17) that if b, applications of it from (n + 1)-th step to (n + b)-th one

constructs the plane partition ||a}}|| from the plane partition ||aj;||, then

ij

t—1 bet
f(na:',-'u)=f(ua;,-u)( 0 y,) | (19)

l==3s+1

From (18) and the description of the insertion algorithm we conclude that

r m j-1 -1
il (1- 1 »)
i=lj=1 I=—i41

= > > - > C(k(~r + 1), k(-1 +2),...,k(m —1))

k(-r+1)=0k(-r+2)=0 k(m-1)=0

m-1
x I o (19)

l==r+1

is the generating function for the numbers Clk(-r+1),k(-r+2),...,k(m— 1)) of
the restricted plane partitions with the sums k(l) of the matrix elements (or parts
of the partition) with the coordinates y;, that is, positioned on the same (say [-th)
diagonal in the matrix ||a;;||. This proves the first part of the theorem (eq. (4),
(5)), where only for convenience all y; are replaced by the products zyi (assuming
that z is complex variables and |z| < 1).

Now let r — 00, m — oo and y; = z for all —o0 < ! < 0o. Then the left hand

side of equation (19) becomes

ﬁ(l — 2?)7, (20)

p=1
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But (20) is the generating function for all (unrestricted) plane partitions (see eq.
(11.2.15) in [1]). Thus, the proof of the Proposition 2 is completed.

Consequently, the inverse function F~!:||a;;|| — ||b;|| is uniquelly defined by
F: ||bsj|] = [las;||. The explicit construction of F~! is straightforward and is left to
the reader (begin with the last nonzero element of the first column of the restricted
plane partition ||a;;}]).

The proof of the theorem is completed by noting that, when inserting b,;, in the
product of y’s in (18) the coordinates with nonnegative indices greater then ¢ — 1
do not appear and the coordinates with nonpositive indices less than —s + 1 do not
appear as well. Hence (6) and (7) follows.

4. Bender and Knuth [3] defined the one-to-one correspondence between plane
partitions and the pairs of generalized Young tableaux of the same shape. The
correspondence is constructed there by the use of Frobenius relation to each row
(or column) of the plane partition. Let us note that there exists much more natural
and simple way of associating plane partitions with the pairs of generalized Young
tableaux. Namely, let us abserve that because of the constrains (1), (2) the parts of
the plane partition on the leeding diagonal and above it define the Gelfand-Zetlin
pattern (see, e.g., [11]). The same holds for the parts on the leading diagonal and
below it. Thus, the restricted plane partition is ewuivalent to two Gelfand—Zetlin
patterns with the same first row (the leading diagonal of the plane partition). Al-
most three dacades ago the present author tacitly assumed it as obvious (while
constructing the bases of the representations of the unitary groups with the aid
of Young operators) that Gelfand-Zetlin pattern id equivalent to the generalized
Young tableau [12]. Let us formulate this equivalence in the terminology and nota-
tion of the present note. The shape of both the generalized Young tableaux in the
correspondence is {ay;,ass, ... » @min(r,m),min(r,m)}- The parts a;; indices (j — i) of
coordinates of which are nonnegative integers, define the generalized Young tableau
as follows: there are (a;; — a;j41) numbers equal to (m — j + i) in the i-th row
of the generalized Young tableau. Analaogously, the parts a;j, indices (j — 1) of
coordinates of which are nonnegative integers, define the second generalized Young
tableau of the same shape as follows: there are (a;; — a;i+1j) numbers equal to
(r =i+ j) in the j-th row of the generalized Young tableau.

Example. The plane partition ||a;;|| from (3) defines the following two general-
ized Young tableaux:
1111222223 1112222334
22344 33344
4 4

Note. From the theorem it follows that the number of appearances of the number
p in the first generalized Young tableau is equal to the (m — p+ 1)-th column sum
of the image [|b;;|| of the plane partition ||a;;|| in the bijection and is equal to the’
(r — p+ 1)-th row sum in ||b;|| in the second generalized Young tableau.
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Plok#&iyjy skaidiniy ir sveikujy neneigiamujy matricy bijekcija
A. A. Jucys
Sukonstruota abipusiskai vienareiksmé atitiktis tarp plokitumos skaidiniy su r eiluéiy ir m

stulpeliy ir sveikyjy neneigiamyjy skaiciy matricy su r eiluéiy ir m stulpeliy.
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