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It is demonstrated that 2Pe number of whole-number nonnegative solutlons of a
a® :

Diophantine equation Z Z ik,=k for variables of ay4 can be expressed in the
=l jwt
form of a simple polynomial on k and [k/1] (1 = 2, 3, ..., n(8)); only members

such as aisrks[k/ilr appear in the polynomial. These polynomials are found for
Y '] v )

all partitions 8 with nm-z i#<7. A recurrent method of deduction is proposed
im{

for any value of the parameter m(8). The problem of determining the multi-

plicities of irreducible representations of a symmetrical group Sm in a rep-

resentation of it by the action in a multitude of ordered partitions of the
number k into no more than m parts and, as a special case. the problem of de-
termining the number of the disordered partitions, are reduced to this problem.
Formulas for calculating these numbers are cited for all m < 7; in a certain
sense they are simpler than those recently acquired by Colman. The use of the
results for the problem of classifying the states of a multidimensional quan-
tum-mechanical harmonic oscillator is examined.

1. The whole part of the rational number a will be designated as [a] below. Ac-
cording to definition,

[=dlm =fa]l=1 tor @60 ane [O}mO. (1)

For a whole number k and a natural number i the following equality will be used as defi-
nition of the value (k)1: _ o

Ohmk—ill, (2)

i.e., (k)i is the least positive representative of a class of remainders in terms of the

modulus 1. Greek letters will be used to designate the partitions and their parts; where

B=m{By By .0, B 1S equal to the number of parts equal to 1 in the partition 8 (81 2 0).

Finite partitions are examined. There is a greater part of the n(8) partition of 3; m@=
a@®

= Eiiﬂu i.e., B 1s the partition of the number m(8). Derivatives of the function
(2] .

n@= =T GEO

I] a-o® fr (3)
{wt
will be examined. From the expansion
= ok
kg

and from the rules of multiplication of exponéntial progressions it follows that CB(k)
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in (3) is equal to the number of solutions in whole, nonnegative numbers aij of the
Diophantine (or undetermined) equation

N L
Z Z igyymk. (5)
il jsl
In a special case, when all 8, =1 (1 =1, 2, ..., m), it is found in [1,2] that:
b h
1 - - &
— Z"P.f, (6)
[Ta-»
23

where Pg, as follows from (5) (with n(B) = m and @ = ai) is the number of disordered

partitions of the numer k into parts which do not exceed m. From a representation of
the partition of the number k in the form of aYoung diagram (or a Ferraro graph) it is

easy to see as in [2,3] that Pg may also be interpreted as the number of partitions into
no more than m parts. When the number of partitions into equal to m parts is designated
as Fﬁ, then the following equality will be the case

FL=rt= (7

Recently Colman [4] found formulas for calculating ?ﬁ with m = 2, 3, ..., 7 which are

much simpler in appearance than the previously known formulas. He also provided a method
for sequential deduction of such formulas for any small value of m. (Without repeating
the brief historical review of this question given by Colman and his further references,

it is only noted that the first expressions for F% and F% were acquired by DeMorgan
in 1843.) However, the Colman formulas contaln prigonometric parts, while those of
M. Hall ([1], p. 47) show that Fg may be expressed algebraically in the form of a poly-

nomial on k of the m - 1 power with coefficients which are a function of the class of
deductions in terms of the modulus m!, to which k belongs. Relying on information pro-
vided by this theorem of Hall, it would be possible to seek algebraic expressions for

Pg in the form of polynomials of two variables k and (k)m!' Here, in the general case
the power of the polynomials with respect to the variable (k)m! is equal to m! - 1, since
m! coefficients at k3 are a function of the value of the variable (k)m!’ they may be un-
ambiguously expressed in the form of a polynomial with a power of m! - 1 of this variable
using Lagrange's interpolation formula.

It is therefore surprising that there are simpler algebraic expressions not only
for P;, but also for cﬁ(k) at any 8 (problem generalization), or, more precisely, CB(k)
can be expressed in the form

@ =t

Corm Y 3 My (W) (RX, (8)

jwf s}
where MBir(k) is the polynomial with a power no greater than SSI from the variable k,

Su=(Z 8)-1. (9)

0

Here i|J means that J 1s divided into 1 without a remainder (in (8) it is assumed that
(k)g‘- 1). It follows from (8) and (9) that, in particular, the coefficlent at k% 1in an
algebraic expression for Pﬁ is assigned by a substantially lower number of constants as

compared with m! which is expected on the basis of the Hall theorem. Structural demon-
stration of the statement of (8) and (9) is one of the basic results of this work. Along
with this, this work finds the polynomials Mair(k) (and in the same way CB(k)) for all

8 with m(8) < 7 and proposes a method for recurrent construction of expressions of CB(k)
for any 8 and m(8). Paragraph 7 of this work reduces.the problem of determining the
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multipliclties of irreducible representations of the symmetrical group Sm in 1ts repre-

sentation in a multitude of ordered partitions of the number k into no more than m parts
o this problem. A special case of the latter problem =- numbering the disordered parti-
tions - is examined in the last paragraph; in the formulas acquired using the method in
this work there are no trigonometric parts which are present in the formulas acquired
using the Colman method.

The concluding paragraph of this work examines one of the possible physical appli-
cations of the mathematical results acquired here. It is not the only problem of classi-
fication of the states of quantum mechanical many-particle systems. The problem of de-
termining the multiplicities of states of configurations of equivalent particles in shell
models with a quite large complete angular momentum (see [5.-.7]%) is reduced to the ex-
amined problem.

2. Demonstration of the statement of (8) is performed using a transfinite induction
method. The multitude of partitions P is completely ordered by the introduction of a
relation such as: B<a(« BeP), when and only when for a certain 1 Bi < ay and Bs = ag for

all s > 1. It 1s noted that P contains all finite partitions; normally submultitudes of
partitions with fixed m(y) are examined with orderings. The bases in the induction will
be partitions such as ¢0,0, ... v» 0,0, ...)my(). Since

1 - < k"’fg'-l

A =xym Z:.( o | )‘.' ) (10)

where (:) is a binomial coefficient and, since
-1
1 0, when itk,
"u-"'m"zl ("m‘)'{ 1, wnen |k, (1)
where itk means that the remainder from dividing k by i is not equal to zero, then
-t -1
1 k

In the same way it 1s tested that for base partitions of v(1) statement (8) is valid and
an explicit form of the polynomials My 18 found for these partitions.

The author offers the complete symmetrical functions [8-10] of hy on variables of
X1s X5, eeny for examination

LD N e (13)

A6HE... <8

along with the symmetrical functions of exponential sums

S=3 5 (14)

f ]

For partition of «eP the following 1s assumed
"--l"I A, (15)
S.-n S:‘. (16)

]

The multitudes {i |aeP} and {S.|1a&P} are bases of a ring of symmetrical functions above a
field of rational numbers [8-10] and, therefore, ha may be unambiguously expressed in
the form

= Y 0uS
'

(= @wr (o2, pia). (1n

%A clerical error is noted in [7]: 27 instead of T must be in the equality (6) under
the sign of the threshold.



(work [10] provides tables of the coefflclents of Qae)' In particular, for function (13),
from [8-10], it is found that
b= —— ..
+ [l (18)

(men=i)

The equalities (15)-(18) assign the algorithm for finding the coefficients of Qas‘ It
is assumed that

(19)

A line above the designation of the function will mean that substitution of (19) in it
is complete. As a result of (3), (14), and (16)

Sy=a (0. (20)
The following equality ([8], chapter 7 and [9], chapter 1, §3)%
L-r‘]:l-ﬂ. (21)
=i

From (17), (20), and (21) it is found that

()= ; Qs 90 () (22)
(= G s, $0)

where a4 is a partition with
i=) & (23)
™

Since & > 8 follows from a 2 B8 (when & # a(l)), then for partitions d, which are char-
acterized by the fact that &>&.. (as a result of (23)). the equallty (22) makes it pos-
sible to find Ca(x) when cs(x) are known for the partitions &, less than 8. In the same

way (8) is valid for &, when it is valid for these 8, since by taking a linear combina-
tion the property (8) is preserved (in the speclal case ima(miag 0, ...>», while e,m()=

= 1K1-x)"-2 (":“’;l)x‘ and the statement of (8) is also valid).
H -

But for any partition y it is assumed that

0, ween v, > max {¥,|8>i},

l‘(ﬂ.{ max {7, 8>} =Y, ween v, <mmx {Y,13>1}.

(24)

Then &(y) with &)=v+&{) satisfies the inequality
Zr &) (25)

and therefore, for a(y) (22) and (23) with replacement of & for &(y) and a for a () (=M=
=& (p)~%s1(y) may be used in accordance with (23)). It is found that

2= ] A= pgen )=
]
-1 a-2** ) Qe st (*- (26)
[}

’
(e G0 (2 (0} B0 tm)
Equality (26) is a basic one in our demonstration. In 1t

r>z()>8 27

#Tt is noted that (21) along with (18) and (20) leads to the Kelly formula (C31,
p. 215).



with the exception only of cases of vy = y(i) which, however, have already been examined
as the basis cases for induction and for which statement (8) is valid (see (12)). Assume
that

;ﬁ.(v)

Gy @=J0-xf "= 3 D)= (28)
1] =g

9;i,) 1s a polynomial (not an infinite progression). It 1is found from (3), (26), and
(28) that

; &0
G (b= hX S QunsCaltk=1) Dz k)
ry =0 (29)
(m B =m (w0, pes l'!))

(k-0 1is expressed in the form of a polynomial with an exponent of 1 - 1 of (k)i' It is

found that -
(=) _
1 G52 - o)
[
where Gab is the Kronecker symbol. Since at (Z)1 # 0
Bt
== (k+1=())i= Z (+i=D) 3.+
and . (31)

(] .
+ 2 (f~-OF 3w,
Lol -t

the substitution of (30) in (31) leads to the unknown expressions. Assuming that (8)
is true for all 8 < y, from (27), (30), and (31) it is found that cy(k) also has the

appearance of (8) (when Msir(k) is a polynomial while Mair(k - 1) 1s also a polynomial).

In the same way statement (8) is structurally demonstrated, i.e., in the course of
the demonstrationan algorithmof recurrent finding of the polynomials MBir(k)'»n constructed.

3. The authors demonstrate the validity of statement (9). Assume that B(J) is a
partition with sjj) = BJ - 1 and Béj) = Bs for s ¥ J. It is found that

B (1 =x)=gun (x) (32)
from which 1t 1s found that .
Co (k)= Cy (k=)= Cyn (k). 4 (33)

Since (k - J), = (k), at 1 > 1 when and only when 1|J, then from (33) it follows that at
i > 1, when and only when

My (k)= Moy (k=)= Myn , (k). (34)

Therefore, for powers sBir of the polynomials MBir(k) (1 > 1) it 1is found that

Spu=Syn., w i), (35a)
and (as a result of (34)) either
Myn, =0, (35b)
or
Spe=Syn,+1, w i]. (35¢)

Assume that the statement (9) is valid for all partitions less than B (for basis parti-
tions B(1) (9) is valid as a result of (12)). Since 8¥<f., it follows from (35) that
it is also valid for 8 in the case of 1 > 1. For i1 = 1 the equality (34) in the general
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case 1s not satisfied, but Sgq < SBi at 1 > 1 and 8 # 8(1) (when B8 = B(l), then statement
(9) is valid as a result of (10)-(12). Therefore, from (31) and (33) and the demonstrated
validity of (9) for 1 > 1, it follows that the power sBlO of the nolynomial Mslo(k) is

one higher than the power of the polynomial M, o(k). 2and hence, sequentially removing a
part of the partition B8, it 1s found that

Sue=Sn=2, 8~1
]

is precisely the case.

4. The authors consider an example. Assume that y={(al, 2),a32 (since there are no
parts of partitions larger than 3, only the first three numbers are indicated in designa-
tions of the partitions). It is found that &(n)=<0. l. 0}, &(Y=<a 2, 2}, a()=Ca=2.0.2). From
(17) and (18) it is found that

hy= 61 (St +3 5, S +2 5 (36)

hegezio. 5= 361 (STH+ 6 ST2 5, +4 57! Sy +
+95¢SI+ 1257 5, 5, +45172 5D,

Substitution of (19), the equality (20), and (26) produces

(37)

Pa 1.5 (@)= (1 =) 90 2. (X)= -'%‘-‘- (Peavs 0.0 () +
+ 6 @eaia, 1, 0 () + 40¢ant, 0, () + 9 % 2. 3 (X)+ (38)
+ 12001, 1, 15 () + 4 Ptam2 0. 5 (3))-

Assume that a = 3; for all partitions B the numbers 7 which appear in this case in the
right side of the equality (38) and the expansion (3) are already known (see paragraph

6 of this work) and therefore, all that remains is to multiply by (1 - x*). This multi-
plication 1is examined for a member with f=(4,0.1). It is found in paragraph 6 that

Ce 0, 1p(K)=s T2-2 (k% + 144 4 67k + 126k 4- 72) +

£2.971(k)y = 9= (k). (39)
The contribution of the 9-1(1—x% gu. e i{x) member to the expression for Cu,.n0k) 18 equal to
9"‘(C«.o.u(k)—c«.u>("-'2))"3-‘ (40)

Having placed the following expressions 1in (40) and (39) along with those found from (30)

and (31)
(k== (k+ 1)gm 27 (=3 (kR +5(k) +2),
(k== + D=2 (= T+ 13 (k) +2),

it is found that
Bw 162-2(2h%+ 1548+ 33k + 18) = S4-2 (k) + 7 - 1622 (k),. (41)

In the three members of expression (38) the multiple (1 - x2) may be reduced and in this
way their contributions may be expressed throgh Caan®). Co Lok Cooantk) Summing the
contributions of all six members, the following expression 1s found
caum-nm-qa*nswum-»m«-
+ 16704k + 12960) = 32-1(k)y = 54-2 (k + H (KN + (42)
+162-2 (3 + 13) (k).
5. The authors make the following observation. Since the type of formulas for
CB(k) is already known, then relying on this avallable information it 1s possible to ac-
quire any algorithms for finding Ce(k), possibly at times simpler ones than those con-

structed in the course of the demonstration. In particular, it is possible to use the
recurrent relation (33). There are also convenient relations of a special tyve used
only for certain 8. For instance,



1 l l 1
A= (-m = (T 0= U= a-{’ (43)

which may be used to sequentially find C (k) for B=( 1™+, 0,0, 1). It must be noted that
when different algotihms are used, ambiguities may come up which come from the possibility
of expressing (k)i through (l'c)'j when i]J, for instance,

(k).--,- (2R -9 03+ 10(k),).

These ambiguities may be easily eliminated using the appropriate relations. Here, the
conditions of Sy€Sy, may even be violated which, however, does not contradict the state=-
ment (9) since 1t only claims the possibility of fulfilling the condition.

6. This paragraph will present the expressions calculated by the authors for C (k)

for all B with m(B) £ 7 in a rising order of partitions 8. The ambiguities will not be
completely eliminated. It 1s only required that the powers of the polynomials M (k)

not exceed sBi for each 1 £ n(B8) which, as a result of the demonstrated statememt (9),

is always possible.

Cay(k)y=1,

Ca(K)mk+1,

Cor (K)m2-2 (k% + 3k + 2),

Ceay (k) 63 (k% 4- 6k 11k + 6),

Cesy (k) m 2471 (k4 + 10KS + 35k® + SOk + 24),

Csy (k) = 1202 (R® - 1 Sk4 4 8Sk® + 225k% + 274k + 120),

Cory (k) we T20~1 (k84 215 + 175k%.+ T3SkS + 1624k* 4 1764k + T20),
Ca, 1y (k)= 1 =(k)y, .

Ca, n(k)=2- (k+2)~2-1(k),,

Ca, 1y (k)= 472 (k4 4k + 4) = 4= (k),,

Cos, 1y (k)= 2471 (248 4 1SKS+ 34k + 24) = 8- (k),,

Ca, 15 (K)m 481 (K% 4 124 + SQk® + B4k + 48) = 162 (k)y.

Cas. 1 (K) =480~ (2k* + 3Sk* -+ 2304° +- TOOR® +- 968k -+ 480) — 32-1 (k),.
Can(k)=2-1(k+2)=2"2(k+ 2)(k)y

Ca. n (k)= 8= (kS + 6k + 8)— 8- 1 (2k + 5) (K)y

Ca, 2 (k) m 24-1 (k8 4 93 4 26k + 24) = 8= (k + 3)(k)g

Con 2 (k)= 961 (k% 4 1443 + 6848+ 136k + 96) — 321 (2% + T) (k)
Cea, 1 (k)= 8=2 (k® 4 6k + 8) = 8~ (k4 6k + 8) (k),,

Car, 5 (k) =481 (k34 12k% 4 44k + 48) = 16=3 (k®+ Tk + 1 1) (k)y,
Ceo (k)= 1 +2-2(k)f=3-2°2(k)y,

Ca. o1y (k)= 372 (k+3) =31 (k)

Ca o0, 1y (k)= 6=2 (K + 5k + 6) ~ 62 (k) + 62 (k),,

Cas o, 1y (K)m 1872 (k3 + 9k® 4 24k + 18) — 61 (k) + 5- 18- (k),,
Ceo oty () m T2 (AS 4 1452 + 6TRS 4 126k 4+ 72) 9= (B)f + 2- 92 (),
Ca 1. n(k)=62 (k+6) =22 (k) + 22 (k)f = 7 62 (k)y,

Ca. 1, 1y (k)= 12=1 (k8 4 6k + 12) = 4=2 (k)y 4+ 62 (R)} = 2-2 (k)

Ca 1. 1y (k)= 7272 (248 4 2148 4 66k 4 T2) — 83 (k) = 9=1(K),,
Cen. 2. 1 (k) = 24=1 (k24 10k + 24)— -3 (2k + T (R), + 3-1 () —
-Z.S‘l(kk

Caon(k)=3"1k+3)+6"2 (k+ N()F— 2" (k + 3) (k)

Ca, 0 2 (k)= 18=2 (k*+ 9k + 18)+ 182 (k)f — 18-2 (2k + 9) (k).
Canenk)=1=6"2(kR+(kj=11-6-2(k),
Caaan(k)=4-2(k+4)~4-2(k),



Caz.0.0.1> (K) = 8= (k2 4 6k + 8) — 8~1 (k)] + 4 -1 (K),,

Cas 00,15 (k) m 4871 (2h% + 2148 + 64k + 48) — 241 (k)] + 161 (k)3 +
+6-1(k),,

Coronk)ma=t(k+4)=4-1k(k)y—=5- 12" (k) + 2 (k)3 —
-31.12=1(k),,

Ca,r.0 1y (k)= 16-2 (k* 4- 8k + 16)— 81 k(k)y~5-24"2 (k)3 +

+15-16-1 (k)3 -7 671 (k)

Cono 1, (k)= 1271 (B + 12)= 373 (k)y = 6~ (k) + (k) — 19 1271 (k),,
Canoon(k)m+24-2 (kY= 5. 1271 (k) + 35 24-1 (R)§ - 25 - 12-1Gk),,
Cao 000 (k)= 52 (k4 5)— 51 (k),,

Ca 0.0:0.1 (k)= 10-3 (k3 + Tk + 10) — 10~2 (k) + 3- 10-1 (K),,

Co .00 1y (k)= 10-2 (k+ 10) 4 2=1 )y + 62 (k)3 ~4- 32 (k) +
+10-3-1 (b - 83.30~1 (&),

Casane k)=l =120~ (k)+ -2 (k)~17. 242 (kN + 15 8- (k-
- 137. 602 (k)y,

Canaaan®)=6-2k+6)~6-1(k), .
Casasoon(®)=1+720-2 (k)f—49- 2071 (k)3 + 203 - 901 (k)$ -
~49-481 (k)}+ 35+ 1441 (k)§— 7. 240~ k).

7. The basic aspects of this paragraph are partially noted in [11]. Since irre-
ducible representation of the symmetrical group Sm assigned by the A partition is come

monly designated through [A], it is hoped that the ambiguity in the understanding of the
brackets will be eliminated by the context and by the use of Greek letters in one case
and Latin letters in the other. The ordered partitions will be distinguished from the
disordered in the same way. The ordered partition ye(rn,ys ...y0) of the number k into no
more than m parts is solution in whole non-negative numbers of a simple Diophantine
equation

2 n=k; (4h)
-l

yi are the parts of the y partition. When sef, 1.e., when s is transposition of the
multitude {1, 2 .., m}=A, and having used s(D)eM instead of ieM, s shifts vy into ys(i)

Yy, (45)

This determines the effect of the Sm group on the multitude Ym(k) of the ordered parti-
tions of the number k into no fewer than m parts. ‘'The corresponding transposed repre-
sentation 1s designated as Rm(k),

Assume that the disordered partition 8 assigns a class of equivalence of the group
Sm with Bi equal to the number of cycles i long in a cyelic annotation of the transpo-
sition seS,. Then the following is valid.

Proposition 1. CB(k) is equal to the nature of the class of equivalence 8 of the
representation Rm(k) of the group Sm by the action on the Ym(k) multiple.

In fact, the nature of the seS, element in the representation Rm(k) is equal to the
number of partitions yeY.(k), for which )

Yoo mPy toveson i<m, (46)

-
Altogether (46) produces Z(t-l)p, linearly independent equations. The authors examine
=y

(1 - 1) eciuations which correspdnd to a single cycle (pl, Pos «ees pi) with a length of



I (asdululig Llhal Lne Cycle 1y (e =L 10 LO@L SPe¢LlIlC numbering) ol tne tranipogliilon
S

rn=FVo= =y ' (47)

General solution in whole, non-negative numbers of the system of Egs. (47) is the fol=-
lowing

Yoy torssch py, ' (48)

where &4y is any whole non-negative number. Considering the contributions such as (43)
for each transposition cycle s, (5) is found from (44). Proposition 1 is demonstrated
in the same way and, moreover, it is found that the following 1is wvalid.

Proposition 2. ¢B(x) is the derivative function for characters of the Gm group in
a representation of it by its effect in the multitude of ordered partitions.

Assume that ' is the irreducible property of the 8 class of equivalency with hB

elements. From proposition 1 and from the properties of orthogonality of the proper-
tles of the finite groups [8,12], 1t follows that

o 2 hRGEed® )
(-ﬂ.—-b

1s equal to the multiplicity of the irreducible representafion [A] of the S, group in
the representation of Rm(k). Since (see [8,9])

(A=t T s,
(n..-)

(50)

where {A} is the Schur function of the multitude of variables X; Xy, ..;, 1t follows
from (3), (20), (49), and (50) that the following is valid.

Proposition 3. The Schur function

k"';x'{ z hﬂ'h(x)-éﬂ‘(k)x‘ (51)
bJLd

is a derivative functlon for multiplicities of irreducible representations in the rep-

resentation of the sm group in the multitude Ym(k) of the ordered partitions into no
more than m parts.

In the same way the authors came to the basic premise of this particular paragraph.
Assume that h(a) is the length of a hook (h0OOk) of cell a in aYoung diagram which cor-

responds to the A partition (see [9]). The concept of a hook and its length is 1llus-
trated by the following example:

o] 1]

1 — . | (52)

i)

hepd

Here the cells which make up the hook of the g cell (the angular cell of the hook) are
crogssed out. The number of cells of the hook or its length is h(a) = 5. It is shown
in (8], chapter 7 and in [9], chapter 1, §3 that

-
&3-11 e (53)

where c(a) 1s the number of cells above the a-th cell in the Young diagram which corre-
sponds to the A partition. In the example here c(g) = 1. A designation of 900'}5‘“”

o
is used. The sum of the numbers j(s),qed assigns a certain disordered partition BA from

the multitude of P. B8, makes up the submultitude pa{f,|reP}cP. From (3), (51), and
(53) it i1s found that the following is true.

9



Proposition 4. The multiplicity @) of the irreducible representation [A] in the
representation of the Sm group by the action in the multitude of ordered partitions Ym(k)
is equal to Cy (k-q@).

As a result of proposition 4 the results of the previous paragraphs of this work
with respect to CB(k) equally relate to the multiplicities M%), producing, in particu-
lar, a method for deducing polynomial formulas for dﬁﬂﬂ.‘

8. The authors examine a narrow special case of the previous investigation which
corresponds to a partition of A(m) which contains only a single part (Xm = 1). Since
this partition assigns the identical representation of the Sm group, all f®™i=1, and,

since hymmi [[] #8% then it is found from (51), (53). and (6) that

it — 1 - Z — l. ‘Z P:,x',
Mo-9 @e-w [1 Mo [Ta-a™ = (54)
(1) =i .y

Here it 1is taken into consideration that for a single line Young diagramwith a length of
m the set of lengths of the hooks is equal to {1, 2, ..., m}, while q(A(m)) = 0. Thus,
the Kelly equality is encountered once again; this 1s the first equality in (54). On the
left side of 1t is ¢B,(x) with Bjmpjm..-=@.=1 and m(§)=m(m+1)/2, and on the right side of

it all ¢8(x) with m(B8) = m are summed. This equality is one of the recurrent relations

constructed in paragfaph 2 which make it possible to find formulas for coefficlents in
¢B,(x) when they are already known for coefficients in ¢B(x) for all partitions B8 of the

number m. The second equality in (54) is valid since it follows from (5) that Pi=Cy(k) is
equal to the number of whole-number non-negative solutions of equation

Y immk (55)
2 2] :

(ai = “11) is designated, i.e., to the number of disordered partitions of the number k
into parts which do not exceed m (or partitions into no more than m parts). This may be
interpreted differently in the following manner. As 2 result of proposition 3, Pg is
the number ofAidentical representations in the Rm(k) representation. Each of the identli-
cal representations of the Sm group in the Ym(k) multitude mutually and unambiguously
corresponds to a specific orbit of the transposing representation of Rm(k) for Ym(k)o
In turn, each orbit i1s mutually and unambiguously assigned by the disordered partition
which corresponds to tpe ordered partition of this orbit. In other words, Pg is also
.gﬁgenumber of the orbits of the representation Rm(k) of the Sm group in the Ym(k) multi-
These are the general tenets. The author now shifts to calculation of expressions
for P;. Since cs(k) for all B with m(8) < 7 are given in paragraph 6 of this work, then
summing in terms of B in (54) should be performed to find formulas for Pﬁ withm £ 7. In

each of the expressions acquired in this process there is a part as one of the components
which is a linear combination of the form

= =i

Oumy 3 cawlk (56)

il rel
(cmir are the rational numbers). Through direct exhaustive search the author tested the
fact that with the possible sets of values of (k)1 the numerical values of O'm of the
value 0m form=2, 3, ..., 7 do not go beyond the limits of 1 < O'm £ 0. Therefore, in
formulas for-Pg 0m can be discarded and the whole part of the remaining expression (en-

closed in brackets) may be used. It is natural to assume that such a state of affairs

is true for any m. The author currently has no demonstration of this assumption. For-
mulas are cited. :
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Pi=[2-1k+1],
Phm[12-1 k2 4271k + 1],
Phm[144-1/3 4+ 5- 4810+ 2"k 4+ 1 = 16-1k (K)al,
P4 [2880-1 k4 4+ 961 k3 4+ 31 - 288-1k% + 11 - 24-1 k 4+ 1 = 32-1 K (K)q),
PE=(86400-1 kS +7.11 52024+ T7- 648013 +
+31-288=1K1 4+ 167- 3601k + | — 3841k (k)g ~
=7 128=1k (k) + 108-2 k (k) — 362 k k)],

- Phm[3 628 800~ k% + 7- 302 400~1 k5 + 553 . 725 7602 k* +
+161-12960-1k3+251 24002 k* + 157- 3602k + | =
— 76812 (k)g = 7+ 1921k (k) = 1621k (K)gl.

When the formula i1s used for calculating the numerical value of Pi, then it is con-

venient to use the above cited formulas. But when a formula is required for performing
further algebralc calculations, then the residual member of 0 must be knownj; in this

case the brackets in the above cited formulas should be dropped and 0 added. These are
cited below:

Oy = —271(k),,

Oy = =471 (k)g +6-2 () - 272 (k).

Og= = 9-3(R)y= 61 (k) + 13- 16=1 (k) — 13- 1272 k),

Oy 18=1 (k) — 61 (k)y ~ 11 - 962 (k) + 33 - 641 (k) —

= 619671 (k) + 1201 (k) — 1271 ()} 4 T 24=1 () = 5 - 12-1(R),,
Oy= = 127-1152-1 (k) + 127- 2561 (k) = 671 - 11521 k), —
=251 (k) + 13571 ()~ 121 (k)¢ + 95+ 324-1 (k)] - ‘

-5 18- ()~ 19-90~1 (k),,

Oy = = 137-1152-2 ()} + 141 - 2561 (k) = 757 - 11521 (), +
+601 (k)3 =2- 15-1 (k) + 97 - 300~2 (k) = 37 - 1501 (k)g +

+ 5764801 (R)] = 35 - 3241 (R)$ +- 583 - 1296 -1 ()} - 115 1622 (k) +
+ 139+ 54071 (k)g + 50402 (K)f — 2401 (K)§ + S - 1441 ()} =
~T-48-1(k)}}+87-270-1 (k) = 7- 20-3 (),

9. The acquired results may be used for classifying the states of many-particle
gquantum mechanical systems. Assume that Ho is the Hamiltonian of non-interacting m par-

ticles with a common single-particle potential of a harmonic oscillator ([13], p. 345).
Ho is invariant with respect to transformations of the unitary group U3m5 its character-

istic functions, which correspond to the number of quanta, are the basis of a symmetrical
- representation of this group assigned by a single~line Young diagram[n]. With a narrow-
ing of the U3m group to a subgroup of U3 by U, this representation is broken down into

representations of the subgroup assigned by three-line Youngdiagrams [v]. When construct-
ing the wave function which has irreducible transformational properties relative to the
group of transformations of the spatial coordinates, the group Um 1s narrowed to the sym-

metrical subgroup Sm' It 1s in this step that the problem of determining the multipli-
city Cuv of the appearance of the representation [v] of the Sm group in the representa-
tion [v] of the U group comes up. With specific assumptions relative to the perturbating

interaction of particles (for instance, in a supermultiplet model of an atomic nucleus
(ia, ¢ v is also the degree of deformation or the statistical weight of the energy

level. It was found in work [15]* that in the designations of this work

hxpression (18) and the left side of equality (19) of work [15] must be replaced
with n n (:-x,n #)™ while n(l-y.)n n (x-xll'[ 7)™ must be in the left side of (24).

Jol tyeennty Jol ty .. te

11



T § [T 7Gahsd=Z e (), 573

(m @mm)

where p may be assumed to be equal to the number of lines in the Young dlagram [v]. Ex=-
panding the expression on the left slde of equality (57) in terms of the Schur function
{v} (see [8,9]), in the case of p = 3, it is found that

Comar T hst{Co) Gy CaG)=Calav+ 1)
(= Go=m)

x Cy(v—=1) Cy )= Cs(av) Cy v+ 1) Calav—=1)— (58)

—C,(,v+2)C,(.v)C,(,v—2)+C,(,v+2) Caav=1) CGgpv—-D+

+Cyv+1) Caav+1) Ca(sv=2)},
where ,v is the length of the i-th line of the Young diagram [v]. Substituting in (58)
the polynomial expressions for CB(k) examined in the previous paragraphs of thls work,
explicit formulas are found for calculating the multiplicities of Cuv' When oV = 3v = 0

the left side of the equality (57) is greatly simplified (see equality (20) in [15]) and
it produces .

# 1 7:;'7:'«3"'7:‘.%"" (59)

atn
in the designations of paragraph 7 of thls work, from which
CuowmCpuy=Cy, (k-q@w). (60)
1s found for the symmetrical representation [Lvimis] of the U, group.

In conclusion the author examines the case of a translationally invariant Hamiltonilan
of the harmonic oscillator Hb ([13], p. 380 and [14]). In this case the Um—l group 1is
narrowed to the Sm subgroup. For multiplicities vuv of irreducible representations [u]
of the S group in irreducible representations [v] of the Um—l group, an expression 1is

found from equality (24) of work [15] with consideration of the correction made here in
footnote which differs from the right side of (58) by replacement of all CB(k) with

Coyu(k) @ identified in paragraph 3; however, a negative parameter of f¥=-~1 at Bl = 0 1is

allowed in this case. For a symmetrical representation [vimil of the Um—l group, the
following is found

X 1=% =S Vo,
n“_.’".) E L . (61)
™
V,-Ch(k—q@))—%(k‘(@)—l). ’ . (62)

instead of (59) and (60).

HV
in a separate publication at greater values of the m parameter.
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